簡易檢索 / 詳目顯示

研究生: 林冠博
Guan-Bo Lin
論文名稱: 1625nm 雷射二極體研製
The Study and Fabrication of 1625nm Laser Diodes
指導教授: 吳孟奇
Meng-Chyi Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 50
中文關鍵詞: 雷射二極體InGaAsPAlGaInAsInGaAs
外文關鍵詞: laser diodes, InGaAsP, AlGaInAs, InGaAs
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摻鉺光纖放大器在增益頻寬方面的進展,已將長波段通訊窗口往後延伸至1625nm左右,這促使1625nm的雷射得以應用在高密度分波多工系統中。常見的應用為光時域反射儀,可提供不中斷服務的單端光纖檢測,有效地偵測潛在的光纖損壞。另一個應用為光監控頻道通訊用雷射光源,用以監視、控制及保護高密度分波多工系統中的每一道通訊波長,使通訊品質維持所需水準。
    本論文實際製作AlGaInAs/AlGaInAs、InGaAs/InGaAsP及InGaAsP/InGaAsP三種不同主動區材質的1625nm脊狀雷射,脊狀寬度為3μm。由於波長較長,故脊狀高度較高,在正極金屬連接上易出問題,成長兩層介電質以改善。為瞭解長波長歐傑效應與價帶間吸收對表現的影響,量測不同材質之電流–電壓特性、光–電流特性、光譜特性及溫度特性,藉以完整調查何者適合成為1625nm的主動區材質。
    AlGaInAs、InGaAs及InGaAsP三者在腔長300μm,溫度25℃時,所得臨界電流分別為12.7mA、15.5mA及19.6mA,微分量子效率為0.138mW/mA、0.163mW/mA及0.148mW/mA,特徵溫度為44.8K、46.5K及40K,而峰波長在40mA的注入電流下,分別為1670.01nm、1642.64nm及1643.99nm。


    摘要 v 第 1 章 緒論 1 1-1 光纖通訊簡介 1 1-1-1 歷史發展及現況 1 1-1-2 基本架構及高密度分波多工系統 2 1-2 1625 nm 雷射二極體應用 5 1-2-1 光纖檢測及光時域反射儀 5 1-2-2 光監控頻道作用 6 1-3 研究目的與內容 7 第 2 章 原理 8 2-1 邊射型脊狀雷射基本原理 8 2-1-1 雷射原理及增益條件 8 2-1-2 主動區與元件結構 9 2-1-3 脊狀雷射基本特性 10 2-1-3-1 電流–電壓特性 10 2-1-3-2 光–電流特性 10 2-1-3-3 光譜特性 11 2-2 量子井材料選擇 12 2-2-1 波長與能隙 12 2-2-2 晶格匹配與應力 12 2-3 Auger復合與價帶間吸收 14 第 3 章 製程 16 3-1 晶片試樣 16 3-2 寬面積結構雷射製程 18 3-3 脊狀結構雷射製程 22 3-4 針對1625nm 雷射的製程改良 30 第 4 章 量測與分析 32 4-1 晶片試樣螢光光譜 32 4-2 電流–電壓量測 33 4-3 光–電流量測 34 4-4 光譜量測 42 第 5 章 結論 46 5-1 成果 46 5-2 未來方向 47 參考文獻 48

    [1] Joseph C. Palais著,董德國,陳萬清譯,「光纖通訊」,臺灣東華,臺北市,2000。
    [2] Stamatios V. Kartalopoulos著,王崗嶸,陳鴻仁譯,「DWDM技術入門」,全華,臺北市,2002。
    [3] H. Takasugi, N. Tomita, J. Nakano, N. Atobe, “Design of a 1.65-μm-band optical time-domain reflectometer,” Journal of Lightwave Technology, vol. 11, pp. 1742-1748, 1993.
    [4] T. Munakata, Y. Kashima, S. Kusumoto, A.Matoba, H. Takano, “High-power 1.625-μm strained multiple-quantum-well lasers as a light source for optical time-domain reflectometers,” Optical and Quantum Electronics, vol. 28, pp.495-502, 1996.
    [5] T. Munakata, Y. Kashima, A. Matoba, “1.625-μm high-power strained multiple quantum well lasers for optical time-domain reflectometers,” Optical Review, vol. 4, pp.72-42, 1997.
    [6] Y. Kahima, T. Nozawa, T. Munakata, “Metalorganic vapor-phase epitaxy (MOVPE) growth of InGaAsP multiple-quantum-well distributed feedback lasers on InP corrugated substrate, ” Journal of Crystal Growth, vol. 204, pp.429-433, 1999.
    [7] M. Reunert, “Find fiber faults without interrupting service,” Photonics Spectra, vol. 35, pp. 173-176, 2001.
    [8] Fukuda, Mitsuo., “Optical Semiconductor Devices,” Wiley, New York, 1999.
    [9] Govind P. Agrawal, Niloy K. Dutta., “Semiconductor Lasers,” 2nd ed., Van Nostrand Reinhold, New York, 1993.
    [10] D. P. Bour, R. U. Martinelli, R. E. Enstrom, et al., “1.5<λ<1.7μm multiquantum well InGaAs/InGaAsP diode lasers,” Electronics Letters, vol.28, pp.37-39, 1992.
    [11] M. Davies, M. Dion, D. C. Houghton, J. Z. Sedivy, et al., “Long –wavelength high-efficiency low-threshold InGaAsP/InP MQW lasers with compressive strain,” Electronics Letters, vol.28, pp2004-2005, 1992.
    [12] Peter J. A. Thijs, Luuk F. Tiemeijer, J. J. M. Binsma, Teus van Dongen, “Progress in Long-Wavelength Strained-Layer InGaAs(P) Quantum- Well Semiconductor Lasers and Amplifiers,” IEEE Journal of Qunatum Electronics, vol. 30, pp. 477-499, 1994.
    [13] M Gudeny, J Piprek, “Material parameters of quaternary III–V semiconductors for multilayer mirrors at 1.55 -μm wavelength,” Modelling Simul. Mater. Sci. Eng., vol. 4 , pp.349–357, 1996.
    [14] Joachim Piprek, J. Kenton White, Anthony J. SpringThorpe, “What Limits the Maximum Output Power of Long-Wavelength AlGaInAs/InP Laser Diodes?”, IEEE Journal of Quantum Electronics, vol. 38, pp. 1253-1259, 2002.
    [15] Chung-En Zah, Rajaram Bhat, Bhadresh N. Pathak, et al., “High-performance uncooled 1.3-μm AlxGayIn1-x-yAs/InP strained-layer quantum-well lasers for bubscriber loop applications,” IEEE Journal of Quantum Electronics, vol. 30, pp.551, 1994.
    [16] B. Gönül, F. Koçak, H. Toktamiş, et al, “Theoretical Comparison of the band alignment of conventionally strained and strain-compensated phosphorus- aluminum- and nitrogen-based 1.3 μm QW lasers,” Chinese Journal of Physics, vol. 42, pp.764-775, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE