簡易檢索 / 詳目顯示

研究生: 謝欣達
論文名稱: 基於粒子群演算法之五軸側銑路徑規劃
Tool Path Planning for 5-Axis Flank Milling Based on Particle Swarm Optimization
指導教授: 瞿志行
口試委員: 丁慶榮
陳湘鳳
周碩彥
林棋瑋
學位類別: 博士
Doctor
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 89
中文關鍵詞: 五軸加工刀具路徑規劃電腦輔助製造粒子群演算法側銑加工
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來五軸側銑被廣泛應用於複雜曲面的加工,包括汽車、航太、模具與能源等產業。由於額外的刀具旋轉自由度,五軸側銑提供較佳的成型能力與材料移除率,然而其刀具路徑規劃複雜度高,電腦輔助製造軟體的支援不足,仍無法有效控制加工曲面的誤差。此路徑規劃可轉換為數學規劃問題,運用全域最佳化演算法求解,藉此降低曲面的加工誤差。轉換後的問題具有高維度、高度非線性的特性,求解過程的計算效率,或收斂解的品質均不佳。有鑑於此,本研究基於粒子群最佳化演算法,針對直紋曲面的五軸側銑,發展進階式刀具路徑規劃方法,除了改善上述的問題,亦將利用演化計算的優勢,進行路徑規劃方式的創新。研究目的包括了改良刀具運動模式、增加計算效率、提升最佳化路徑品質與結合先進差補技術,分別完成「往復式刀具路徑產生」、「多重路徑規劃」、「結合電腦繪圖晶片」、「擴大刀具運動範圍」、「使用改良式粒子群演算法」與「基於類曲線插補之路徑規劃」等具體工作。根據不同曲面產生的刀具路徑,進行實際切削加工、量測與模擬,測試結果驗證了提出方法的效能。本研究兼具學理創新與應用價值,充分發揮基於全域最佳化之五軸側銑路徑規劃的優勢,不僅有效控制加工曲面的誤差,亦提供新穎的路徑規劃模式,提升複雜幾何的製造技術水準。


    第一章 緒論 1.1 研究背景 1.2 研究目的 第二章 文獻探討 2.1 加工參數設定 2.1.1 切削力與切削速度分析 2.1.2 參數選擇對刀具振動影響 2.2 刀具路徑規劃 2.2.1 獨立調整個別刀具位置 2.2.2基於全域最佳化之路徑規劃 2.3 以往研究限制 第三章 往復式刀具路徑產生 3.1 刀具路徑編碼 3.2 粒子群演算法 3.3不可行解的處理 3.4 誤差估算方式 3.5 程式模擬與實際的切削驗證 3.5.1 模擬結果 3.5.2實際切削驗證 3.6 小結 第四章 結合電腦繪圖晶片 4.1 GPU平行處理介紹 4.2 CPU與GPU的運算效率比較 4.3 討論 4.4小結 第五章 擴大刀具運動範圍 5.1 刀具運動範圍定義 5.2 編碼參數之決定 5.2.1 實驗設計 5.2.2不同解集合對誤差的影響 5.3權重值對於過切與讓切誤差之影響 5.4 小結 第六章 使用改良式粒子群演算法 6.1 改良式粒子群演算法介紹 6.1.1 APSO演算法 6.1.2 FIPS演算法 6.2 路徑規劃之參數設定與規劃結果 6.3 結果與討論 6.4 軟體模擬驗證 第七章 多重刀具路徑規劃 7.1目標式訂定 7.2 路徑規劃模擬與驗證 第八章 基於類曲線插補之路徑規劃 8.1類曲線插補之路徑編碼方式 8.2路徑規劃結果 8.3 實際切削結果 8.4小結 第九章 結論 9.1結論 9.2未來展望 參考文獻

    [1] C. H. Chu and J. T. Chen (2006) “Tool Path Planning for 5-Axis Flank Milling with Developable Surface Approximation,” International Journal of Advanced Manufacturing Technology, Vol. 29, No. 7-8, pp. 707-713.
    [2] A. Larue and Y. Altintas (2005) “Simulation of Flank Milling Processes,” International Journal of Machine Tools and Manufacture, Vol. 45, pp. 549-559.
    [3] A. Larue and B. Anselmetti (2003) “Deviation of a Machined Surface in Flank Milling,” International Journal of Machine Tools & Manufacture, Vol. 43, pp. 129-138.
    [4] W. Ferry and Y. Altintas (2008) “Virtual Five-Axis Flank Milling of Jet Engine Impellers - Part I: Mechanics of Five-Axis Flank Milling,” Journal of Manufacturing Science and Engineering, Vol. 130, pp. 1-11.
    [5] Y. Landon, S. Segonds, P. Lascoumes, and P. Lagarrigue (2004) “Tool Positioning Error (TPE) Characterisation in Milling,” International Journal of Machine Tools & Manufacture, Vol. 44, pp. 457-464.
    [6] K. Sonthipermpoon, E. Bohez, H. Hasemann, and M. Rautenberg (2010) “The Vibration Behavior of Impeller Blades in the Five-Axis CNC Flank Milling Process,” International Journal of Advanced Manufacturing Technology, Vol. 46, pp 1171-1177.
    [7] T. S. Lima, C. M. Leea, S. W. Kima, and D. W. Leeb (2001) “Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade,” Journal of Materials Processing Technology, Vol. 130-131, pp. 401-406.
    [8] J. Kopac and P. Krajnik (2007) “Robust Design of Flank Milling Parameters Based on Grey-Taguchi Method,” Journal of Materials Processing Technology, Vol. 191, pp. 400-403.
    [9] E. L. J. Bohez, S. D. R. Senadhera, K. Pole, J. R. Duflou, and T. Tar (1997) “A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers,” Journal of Manufacturing Systems, Vol. 16, No. 6, pp.422-436.
    [10] X. W. Liu (1995) “Five-Axis NC Cylindrical Milling of Sculptured Surfaces,” Computer-Aided Design, Vol. 27, No. 12, pp. 887-894.
    [11] H. Gong, L. X. Cao, and J. Liu (2008) “Second Order Approximation of Tool Envelope Surface for 5-axis Machining with Single Point Contact,” Computer-Aided Design, Vol. 40, pp. 604-615.
    [12] D. M. Tsay and M. J. Her (2001) “Accurate 5-Axis Machining of Twisted Ruled Surfaces,” ASME Journal of Manufacturing Science and Engineering, Vol. 123, pp. 731-738.
    [13] S. Bedi, S. Mann, and C. Menzel (2003) “Flank Milling with Flat End Milling Cutters,” Computer Aided Design, Vol. 35, pp. 293-300.
    [14] C. Menzel, S. Bedi, and S. Mann (2004) “Triple Tangent Flank Milling of Ruled Surfaces,” Computer-Aided Design, Vol. 36, pp. 289-296.
    [15] C. Li, S. Bedi, and S. Mann (2006) “Flank Milling of a Ruled Surface with Conical Tools - an Optimization Approach,” International Journal of Advanced Manufacturing Technology, Vol. 29, pp. 1115-1124.
    [16] J. J. Lee and S. H. Suh (1998) “Interference-Free Tool-Path Planning for Flank Milling of Twisted Ruled Surfaces,” International Journal of Advanced Manufacturing Technology, Vol. 14, pp. 795-805.
    [17] J. Senatore, F. Monies, and J. Redonnet, W. Rubio (2005) “Analysis of Improved Positioning in Five-Axis Ruled Surface Milling Using Envelope Surface,” Computer-Aided Design, Vol. 37, pp. 989-998.
    [18] J. Senatore, Y. Landon, and W. Rubio (2008) “Analytical Estimation of Error in Flank Milling of Ruled Surfaces,” Computer-Aided Design, Vol. 40, pp. 595-603.
    [19] Y. Ding, L. M. Zhu, and H. Ding (2007) “Semidefinite Programming for Chebyshev Fitting of Spatial Straight Line with Applications to Cutter Location Planning and Tolerance Evaluation,” Precision Engineering, Vol. 31, pp. 364-368.
    [20] P. H. Wu, Y. W. Li, and C. H. Chu (2008) “Optimized Tool Path Generation in 5-Axis Flank Milling using Dynamic Programming,” International Journal of Machine Tools and Manufacture,” International Journal of Machine Tools and Manufacture, Vol. 48, pp. 914-921.
    [21] C. H. Chu, C. T. Lee, K. W. Tien, and C. J. Ting (2010) “Efficient Tool Path Planning for 5-Axis Flank Milling of Ruled Surfaces Using Ant Colony System Algorithms,” International Journal of Production Research, Vol. 49, No. 6, pp. 1557–1574.
    [22] L. M. Zhu, G. Zheng, H. Ding, and Y. L. Xiong (2010) “Global Optimization of Tool Path for Five-Axis Flank Milling with a Conical Cutter,” Computer-Aided Design, Vol. 42, pp. 903-910.
    [23] K. H. Chen (2011) “Investigation of Tool Orientation for Milling Blade of Impeller in Five-Axis Machining,” International Journal of Advanced Manufacturing Technology, Vol. 52, pp. 235-244.
    [24] H. Gong and N. Wang (2009) “Analytical Calculation of the Envelope Surface for Generic Milling Tools Directly from CL-data Based on the Moving Frame Method,” Computer-Aided Design, Vol. 41,pp. 848-855.
    [25] Q. Z. Bi, L. M. Zhu, Y. H. Wang, and H. Ding (2010) “Analytical Envelope Surface Representation of a Conical Cutter Undergoing Rational Notion,” International Journal of Advanced Manufacturing Technology, Vol. 47, pp. 719-730
    [26] P. Pechard, C. Tournier, C. Lartigue, and J. Lugarini (2009) “Geometrical Deviations Versus Smoothness in 5-axis High-speed Flank Milling,” International Journal of Machine Tools & Manufacture, Vol. 49, pp. 454-461
    [27] J. Kennedy and R. C. Eberhart (1995) “Particle Swarm Optimization,” In Proceedings of IEEE International Conference on Neural Networks, Vol, 4, pp. 1942–1948.
    [28] A. Jalilvand, A. Kimiyaghalam, A. Ashouri, and M. Mahdavi (2008) “Advanced Particle Swarm Optimization-Based PID Controller Parameters Tuning,” IEEE International Multitopic Conference, December 23-24, pp. 429-435.
    [29] J. Kennedy and J. Neves (2004) “The Fully Informed Particle Swarm: Simpler, Maybe Better,” IEEE Transactions of Evolutionary Computation, Vol. 8, No. 3, pp. 204-210.
    [30] P. Besl and N. McKay (1992), “A method for registration of 3-D shapes,” IEEE trans. Pattern Analysis and Machine Intelligence, Vol. 14, pp. 239-256.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE