研究生: |
黃語柔 Huang, Yu-Jou |
---|---|
論文名稱: |
14-3-3θ通過Stat3途徑逆轉上皮-間質轉化, 以允許腫瘤在轉移部位的生長和定殖 14-3-3θ reverses epithelial-mesenchymal transition via Stat3 pathway in order to allow growth and colonization towards tumor metastatic site |
指導教授: |
李佳霖
Lee, Jia-Lin |
口試委員: |
王翊青
Wang, I-Ching 張壯榮 Chang, Chuang-Rung |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | 14-3-3θ 、上皮-間質轉化 、腫瘤轉移 、癌症幹細胞 |
外文關鍵詞: | 14-3-3θ, epithelial-mesenchymal |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在腫瘤轉移期間,表皮細胞可以藉由表皮-間質轉化 (Epithelial-mesenchymal transition) 重新編輯細胞特性,形成具備動態能力的間質細胞。因表皮-間質轉化 (EMT) 時常發生於幹細胞分化期間,因此這種轉換機制也被認為具備幹細胞特性。然而,當人類腫瘤發生轉移時,觀察到具侵襲性的間質癌細胞出現生長停滯,但已轉移的癌細胞則顯示了快速增殖,並且回復到表皮性狀。根據此提出理論:逆轉表皮-間質轉化 (EMT),也就是間質-表皮轉化 (MET) 對於腫瘤細胞到達轉移位時的定殖是必須的。藉由間質-表皮轉化使侵襲性細胞轉化回表皮細胞,表皮癌細胞能固定在轉移位點並且大量增殖以達成癌症轉移的目的。雖然許多研究都指出這種表皮與間質型態之間切換 (EMT-MET switches) 對於癌症轉移的重要性,但目前只有少數研究驗證。因此,間質-表皮轉化 (MET) 的機制仍有待闡明。
在這項研究中,我們提出14-3-3θ誘導間質-表皮轉化 (MET) 的機制,其增加了增殖速率並降低了間質相關基因的表達。相反的,我們使用了CRISPR-Cas9基因剪輯技術在肺癌細胞中敲除14-3-3θ基因的表達,發現癌細胞增殖速率降低。此外,在缺乏14-3-3θ的情況下,激酶Erk和Akt的磷酸化被激活,表皮狀相關基因在14-3-3θ-缺失的細胞中被下調。有趣的是,我們也觀察到跟表皮-間質轉化 (EMT) 信號傳導有關的Stat3被磷酸化激活,臨床數據更顯示Stat3磷酸化在癌轉移部位的相反調節,表明表皮與間質型態之間切換的發生。總之,我們認為14-3-3θ通過Stat3途徑逆轉表皮-間質轉化 (EMT),以允許腫瘤在轉移部位的生長和定殖
During the cancer metastasis, epithelial cells can transform to mesenchymal cells through EMT (Epithelial-mesenchymal transition), leading to cell reprogramming (de-differentiation). Due to EMT often occurs in organogenesis, this switching mechanism is thought to be a feature of stem cell. However, metastases of human cancers often show a re-differentiation in the sense of a mesenchymal-epithelial transition (MET), with invasive cancer cells shown growth arrested, and proliferation detected in re-differentiated (MET) metastasis. This brings about the proposal that EMT must be reversed in order to allow the tumor to grow and colonize towards the secondary site. Although many clinical reports foster the concept of the switches of transient EMT-MET in metastasis, there are only a few experimental proofs found. Therefore, the mechanism of MET remains to be elucidated. In this study, we describe a mechanism that 14-3-3θ induces MET, which increases the proliferation rate and decreases the expression of EMT-related genes. On the contrary, the cell proliferation rate was found reduced in 14-3-3θ-knockout cells by CRISPR-Cas9 technology. In addition, phosphorylation of Erk and Akt was activated under the absence of 14-3-3θ. Furthermore, Stat3 were more activated and the expression of EMT-related genes was increased in 14-3-3θ-knockout cells. Clinical data also showed the opposite regulation of Stat3 phosphorylation at cancer metastatic site, indicating the occurrence of the switches of EMT-MET. In summary, we conclude that 14-3-3θ reverses epithelial-mesenchymal transition to allow the tumor to grow and colonize to the metastatic site to the metastatic site via Stat3 pathway.
1. Jemal, A., et al., Global cancer statistics. CA: A cancer journal for clinicians, 2011. 61(2): p. 69-90.
2. Subramanian, J. and R. Govindan, Lung cancer in never smokers: a review. Journal of clinical oncology, 2007. 25(5): p. 561-570.
3. Brennan, P., et al., High cumulative risk of lung cancer death among smokers and nonsmokers in Central and Eastern Europe. American journal of epidemiology, 2006. 164(12): p. 1233-1241.
4. Yang, I.A., J.W. Holloway, and K.M. Fong, Genetic susceptibility to lung cancer and co-morbidities. Journal of thoracic disease, 2013. 5(Suppl 5): p. S454.
5. Wang, J., et al., Genetic predisposition to lung cancer: comprehensive literature integration, meta-analysis, and multiple evidence assessment of candidate-gene association studies. Scientific reports, 2017. 7(1): p. 8371.
6. Barrera-Rodriguez, R. and J. Morales-Fuentes, Lung cancer in women. Lung Cancer: Targets and therapy, 2012. 3: p. 79.
7. Leslie, M., How does a cell know its size? 2011, American association for the advancement of science.
8. Yanagisawa, K., et al., Proteomic patterns of tumour subsets in non-small-cell lung cancer. The lancet, 2003. 362(9382): p. 433-439.
9. Wood, D.E., National Comprehensive Cancer Network (NCCN) clinical practice guidelines for lung cancer screening. Thoracic surgery clinics, 2015. 25(2): p. 185-197.
10. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A cancer journal for clinicians, 2018. 68(6): p. 394-424.
11. Zappa, C. and S.A. Mousa, Non-small cell lung cancer: current treatment and future advances. Translational lung cancer research, 2016. 5(3): p. 288.
12. Popper, H.H., Progression and metastasis of lung cancer. Cancer and metastasis reviews, 2016. 35(1): p. 75-91.
13. Hsu, F., et al., Patterns of spread and prognostic implications of lung cancer metastasis in an era of driver mutations. Current oncology, 2017. 24(4): p. 228.
14. Noone, A., et al., SEER cancer statistics review, 1975-2015. Bethesda, MD: National cancer institute, 2018.
15. Cohnheim, J., Congenitales, quergestreiftes muskelsarkom der nieren. Virchows archiv, 1875. 65(1): p. 64-69.
16. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature medicine, 1997. 3(7): p. 730.
17. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proceedings of the national academy of sciences, 2003. 100(7): p. 3983-3988.
18. Wright, M.H., et al., Brca1 breast tumors contain distinct CD44+/CD24-and CD133+ cells with cancer stem cell characteristics. Breast cancer research, 2008. 10(1): p. R10.
19. Prieto-Vila, M., et al., Drug resistance driven by cancer stem cells and their niche. International journal of molecular sciences, 2017. 18(12): p. 2574.
20. Pardal, R., M.F. Clarke, and S.J. Morrison, Applying the principles of stem-cell biology to cancer. Nature reviews cancer, 2003. 3(12): p. 895.
21. Beck, B. and C. Blanpain, Unravelling cancer stem cell potential. Nature reviews cancer, 2013. 13(10): p. 727.
22. Visvader, J.E. and G.J. Lindeman, Cancer stem cells: current status and evolving complexities. Cell stem cell, 2012. 10(6): p. 717-728.
23. Dallas, N.A., et al., Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer research, 2009. 69(5): p. 1951-1957.
24. Bao, S., et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006. 444(7120): p. 756.
25. Gottesman, M.M. and I. Pastan, Biochemistry of multidrug resistance mediated by the multidrug transporter. Annual review of biochemistry, 1993. 62(1): p. 385-427.
26. Simon, M.C. and B. Keith, The role of oxygen availability in embryonic development and stem cell function. Nature reviews molecular cell biology, 2008. 9(4): p. 285.
27. Carnero, A., et al., The cancer stem-cell signaling network and resistance to therapy. Cancer treatment reviews, 2016. 49: p. 25-36.
28. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4): p. 704-715.
29. Pirozzi, G., et al., Epithelial to mesenchymal transition by TGFβ-1 induction increases stemness characteristics in primary non small cell lung cancer cell line. PloS one, 2011. 6(6): p. e21548.
30. Martin, F., et al., Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast cancer research and treatment, 2010. 124(2): p. 317-326.
31. Sharma, S.V., et al., A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 2010. 141(1): p. 69-80.
32. Dingli, D. and F. Michor, Successful therapy must eradicate cancer stem cells. Stem cells, 2006. 24(12): p. 2603-2610.
33. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial–mesenchymal transition. Nature reviews molecular cell biology, 2014. 15(3): p. 178.
34. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. The journal of clinical investigation, 2009. 119(6): p. 1420-1428.
35. Stone, R.C., et al., Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell and tissue research, 2016. 365(3): p. 495-506.
36. Kim, Y.-S., et al., Role of the epithelial–mesenchymal transition and its effects on embryonic stem cells. Experimental & molecular medicine, 2014. 46(8): p. e108.
37. Radisky, D.C., Epithelial-mesenchymal transition. Journal of cell science, 2005. 118(19): p. 4325-4326.
38. Yang, J. and R.A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental cell, 2008. 14(6): p. 818-829.
39. Hennessy, B.T., et al., Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer research, 2009. 69(10): p. 4116-4124.
40. Scheel, C. and R.A. Weinberg. Cancer stem cells and epithelial–mesenchymal transition: concepts and molecular links. in Seminars in cancer biology. 2012. Elsevier.
41. Mulholland, D.J., et al., Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer research, 2012. 72(7): p. 1878-1889.
42. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-890.
43. Nawshad, A., et al., Transforming growth factor-β signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells tissues organs, 2005. 179(1-2): p. 11-23.
44. Wu, Z.-Q., et al., Canonical Wnt signaling regulates Slug activity and links epithelial–mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proceedings of the national academy of sciences, 2012. 109(41): p. 16654-16659.
45. Wang, Z., et al., The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Current drug targets, 2010. 11(6): p. 745-751.
46. Kang, Y. and J. Massagué, Epithelial-mesenchymal transitions: twist in development and metastasis. Cell, 2004. 118(3): p. 277-279.
47. Bolós, V., et al., The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. Journal of cell science, 2003. 116(3): p. 499-511.
48. De Craene, B. and G. Berx, Regulatory networks defining EMT during cancer initiation and progression. Nature reviews cancer, 2013. 13(2): p. 97.
49. Onder, T.T., et al., Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer research, 2008. 68(10): p. 3645-3654.
50. Brabletz, T., To differentiate or not—routes towards metastasis. Nature reviews cancer, 2012. 12(6): p. 425.
51. Kim, D., et al., Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. Journal of clinical medicine, 2017. 7(1): p. 1.
52. del Pozo Martin, Y., et al., Mesenchymal cancer cell-stroma crosstalk promotes niche activation, epithelial reversion, and metastatic colonization. Cell reports, 2015. 13(11): p. 2456-2469.
53. Tsai, J.H. and J. Yang, Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes & development, 2013. 27(20): p. 2192-2206.
54. Li, B., et al., Evidence for mesenchymal− epithelial transition associated with mouse hepatic stem cell differentiation. PloS one, 2011. 6(2): p. e17092.
55. Li, R., et al., A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell stem cell, 2010. 7(1): p. 51-63.
56. Aitken, A., 14-3-3 and its possible role in co-ordinating multiple signalling pathways. Trends in cell biology, 1996. 6(9): p. 341-347.
57. Finnie, C., J. Borch, and D.B. Collinge, 14-3-3 proteins: eukaryotic regulatory proteins with many functions. Plant molecular biology, 1999. 40(4): p. 545-554.
58. Jones, D.H., S. Ley, and A. Aitken, Isoforms of 14-3-3 protein can form homo-and heterodimers in vivo and in vitro: implications for function as adapter proteins. FEBS letters, 1995. 368(1): p. 55-58.
59. Aghazadeh, Y. and V. Papadopoulos, The role of the 14-3-3 protein family in health, disease, and drug development. Drug discovery today, 2016. 21(2): p. 278-287.
60. Sluchanko, N.N. and N.B. Gusev, Moonlighting chaperone‐like activity of the universal regulatory 14‐3‐3 proteins. The FEBS journal, 2017. 284(9): p. 1279-1295.
61. Freeman, A.K. and D.K. Morrison. 14-3-3 Proteins: diverse functions in cell proliferation and cancer progression. in Seminars in cell & developmental biology. 2011. Elsevier.
62. Brandwein, D. and Z. Wang, Interaction between Rho GTPases and 14-3-3 proteins. International journal of molecular sciences, 2017. 18(10): p. 2148.
63. Paul, A.-L., et al., 14-3-3 Phosphoprotein interaction networks–does isoform diversity present functional interaction specification, Frontiers in plant science, 2012. 3: p. 190.
64. Wilker, E. and M.B. Yaffe, 14-3-3 proteins—a focus on cancer and human disease. Journal of molecular and cellular cardiology, 2004. 37(3): p. 633-642.
65. Neal, C.L. and D. Yu, 14-3-3ζ as a prognostic marker and therapeutic target for cancer. Expert opinion on therapeutic targets, 2010. 14(12): p. 1343-1354.
66. Tzivion, G., et al. 14-3-3 proteins as potential oncogenes. in Seminars in cancer biology. 2006. Elsevier.
67. Morrison, D.K., The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends in cell biology, 2009. 19(1): p. 16-23.
68. Nakanishi, K., et al., Elevated expression levels of the 14-3-3 family of proteins in lung cancer tissues. Human antibodies, 1997. 8(4): p. 189-194.
69. Lee, C.-H., et al., The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas: a histologically high-grade and clinically aggressive tumor. The American journal of surgical pathology, 2012. 36(5): p. 641-653.
70. Li, Z., J.-Y. Liu, and J.-T. Zhang, 14-3-3σ, the double-edged sword of human cancers. American journal of translational research, 2009. 1(4): p. 326.
71. Wilker, E.W., et al., A structural basis for 14-3-3σ functional specificity. Journal of biological chemistry, 2005. 280(19): p. 18891-18898.
72. Goc, A., et al., Rac1 activation driven by 14-3-3ζ dimerization promotes prostate cancer cell-matrix interactions, motility and transendothelial migration. PloS one, 2012. 7(7): p. e40594.
73. Li, N., et al., Overexpression of 14-3-3θ promotes tumor metastasis and indicates poor prognosis in breast carcinoma. Oncotarget, 2014. 5(1): p. 249.
74. Masters, S.C. and H. Fu, 14-3-3 proteins mediate an essential anti-apoptotic signal. Journal of biological chemistry, 2001. 276(48): p. 45193-45200.
75. Nomura, M., et al., 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax. Journal of biological chemistry, 2003. 278(3): p. 2058-2065.
76. Scheibner, K.A., et al., MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14-3-3θ. PloS one, 2012. 7(12): p. e50895.
77. Qi, W. and J.D. Martinez, Reduction of 14-3-3 proteins correlates with increased sensitivity to killing of human lung cancer cells by ionizing radiation. Radiation research, 2003. 160(2): p. 217-223.
78. Gu, H. and B.G. Neel, The ‘Gab’in signal transduction. Trends in cell biology, 2003. 13(3): p. 122-130.
79. Yin, X., et al., Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling. Journal of hematology & oncology, 2015. 8(1): p. 23.
80. Zhang, C., et al., STAT3 cooperates with Twist to mediate epithelial-mesenchymal transition in human hepatocellular carcinoma cells. Oncology reports, 2015. 33(4): p. 1872-1882.
81. Huang, G., et al., STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem cells, 2014. 32(5): p. 1149-1160.
82. Pei, D., et al., Mesenchymal–epithelial transition in development and reprogramming. Nature cell biology, 2019. 21(1): p. 44.
83. Tang, Y., et al., 14-3-3β promotes migration and invasion of human hepatocellular carcinoma cells by modulating expression of MMP2 and MMP9 through PI3K/Akt/NF-κB pathway. PloS one, 2016. 11(1): p. e0146070.
84. Liu, T.-A., et al., 14-3-3ε overexpression contributes to epithelial-mesenchymal transition of hepatocellular carcinoma. PloS one, 2013. 8(3): p. e57968.
85. Raychaudhuri, K., et al., 14-3-3σ gene loss leads to activation of the epithelial to mesenchymal transition due to the stabilization of c-Jun protein. Journal of biological chemistry, 2016. 291(31): p. 16068-16081.
86. Brummer, T., et al., Phosphorylation‐dependent binding of 14‐3‐3 terminates signalling by the Gab2 docking protein. The EMBO journal, 2008. 27(17): p. 2305-2316.
87. Yaffe, M.B., How do 14‐3‐3 proteins work?–Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS letters, 2002. 513(1): p. 53-57.
88. Xing, H., et al., 14‐3‐3 proteins block apoptosis and differentially regulate MAPK cascades. The EMBO journal, 2000. 19(3): p. 349-358.
89. Dong, S., et al., 14–3-3 integrates prosurvival signals mediated by the AKT and MAPK pathways in ZNF198-FGFR1–transformed hematopoietic cells. Blood, 2007. 110(1): p. 360-369.
90. Jiang, W., et al., Sulfated polysaccharide of Sepiella Maindroni ink inhibits the migration, invasion and matrix metalloproteinase-2 expression through suppressing EGFR-mediated p38/MAPK and PI3K/Akt/mTOR signaling pathways in SKOV-3 cells. International journal of biological macromolecules, 2018. 107: p. 349-362.
91. Wendt, M.K., et al., STAT3 and epithelial–mesenchymal transitions in carcinomas. Jak-stat, 2014. 3(2): p. e28975.
92. Yao, D., C. Dai, and S. Peng, Mechanism of the mesenchymal–epithelial transition and its relationship with metastatic tumor formation. Molecular cancer research, 2011. 9(12): p. 1608-1620.