簡易檢索 / 詳目顯示

研究生: 趙芙涵
Chao, Fu Han
論文名稱: 射頻加速器中的電子束時空操控
Spatiotemporal manipulation of electron beams in RF accelerators
指導教授: 黃衍介
Yen-Chieh Huang
周炳榮
Ping-J. Chou
口試委員: 林明緯
Min-Wei Lin
張存續
Tsun-Hsu Chang
黃清鄉
Ching-Shiang Hwang
林克剛
Ke-Kang Lin
學位類別: 博士
Doctor
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 118
中文關鍵詞: 粒子加速器電子束團操縱先進光源超輻射自由電子雷射
外文關鍵詞: Particle accelerator, Beam manipulation, Advanced light sources, Superradiance, Free electron laser
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在世界各處,有許多的高能電子加速器光源已完工且進行運轉,如儲存環,自由電子雷射,能量回收式直線加速器。隨著對設計高亮度高同調性小巧光源的追求不斷提升,產生相對應高亮度電子束的方法也因應而生。我們將介紹一些已發展用於提升幅射特質的電子束團操控方法。
    在此論文中,我們將討論範圍限定於直線型射頻加速器系統的電子束動力學,與分析由射頻電磁場與空間電荷場引發的電子束變型現象。為了在此現象影響下能得到理想的輸出電子團,我們使用自行開發的演算法來推算加速器系統的輸入電子團時空分佈。我們提出兩個新的電子束團操控方式,且介紹如何藉由光陰極的設計和先進光學技術在光陰極產生具有特別時空分佈的電子團。透過模擬結果,我們證實拍赫茲高精細度的密度分布調控微電子團可成功在加速過程中產生。在各種加速器光源中,此類精密微電子團可用於產生短波長同調性幅射。在同樣的光源中,同調性輻射的亮度比起隨機分布電子束產生的非同調性輻射大了數個等級。我們提出的這兩個方法提供更多控制維度,使人得以更加方便的進行電子束團操控。此外,在此論文提出一個自由電子雷射放大器搭配可調式太赫茲光參數放大雷射種子的設計。在此設計中,百萬電子伏特電子束的相空間操控,以及太赫茲輻射光的放大,都可以在一個聚頻磁鐵中完成。


    A variety of accelerator-based light sources driven by relativistic electron beams, such as storage rings, free electron lasers and energy recovery linacs, have been commissioned and operated around the world. To meet the increasing demands for generating intense coherent radiations from compact accelerator beamlines, new schemes for producing electron beams with corresponding properties have been developed. We introduce several beam manipulation schemes developed for improving the radiation properties in modern accelerator systems.
    In this dissertation, we focus on the beam dynamics in linear RF accelerator systems, and analyze an interesting distortion phenomenon of electron beams induced by the RF acceleration and space charge fields. To obtain a desired output beam, we take into account the distortion phenomenon and calculate the spatiotemporal distribution of the input beam by using self-developed algorithms. We describe two proposed schemes which rely on the design of the photocathode and advanced optical technologies to realize a tailor-designed spatiotemporal distribution of the input beams during photoemission. The simulation results show that a tenuous density modulation with a frequency between sub-petahertz to a few petahertz can be created in electron beams with the proposed schemes. Such a density-modulated beam is useful to generate coherent radiation at short wavelengths in various accelerator-based light sources. The power of the coherent radiation can be orders of magnitude brighter than that of the incoherent radiation from a randomly distributed beam in an equivalent light source. Of particular interest is the two proposed schemes allow one to conveniently manipulate the beams with additional degrees of freedom. Furthermore, we propose a design of a free electron laser amplification system seeded by a broadly tunable terahertz parametric amplifier laser, in which both the phase space manipulation of the MeV electron beam and amplification of terahertz radiation can be implemented in an undulator.

    Contents CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 BASIC PRINCIPLES 1 1.3 OVERVIEW OF RECENTLY DEVELOPED BEAM MANIPULATION SCHEMES IN ACCELERATOR SYSTEMS 2 1.4 GENERATION OF ULTRASHORT ELECTRON BUNCHES FROM AN RF PHOTOINJECTOR 2 1.5 GENERATION AND RADIATION OF PHZ REPETITIVE HOLLOW ELECTRON BUNCHES 3 1.6 BROADLY TUNABLE HIGH POWER THZ FEL AMPLIFIER 3 REFERENCES 3 CHAPTER 2 BASIC PRINCIPLES 5 2.1 INTRODUCTION 5 2.2 BASICS OF SUPERRADIANT EMISSION 5 2.2.1 Superradiant emission from a single group of emitters 5 2.2.2 Superradiant emission from multiple groups of emitters 7 2.3 INCOHERENT AND COHERENT RADIATION FROM ELECTRON BEAMS 8 2.4 SASE AND SUPERRADIANT FREE ELECTRON LASERS 8 2.5 NUMERICAL SIMULATIONS 11 2.6 CONCLUSION 13 REFERENCES 13 CHAPTER 3 OVERVIEW OF RECENTLY DEVELOPED BEAM MANIPULATION SCHEMES 14 3.1 INTRODUCTION 14 3.2 PHOTOEMISSION MANIPULATION 14 3.2.1 Laser beat-wave 15 3.2.2 Experiments of multicolor lasers in NTHU 17 3.2.3 Laser pulse stacking 22 3.2.4 Schottky-enabled photoemission 24 3.3 PHASE SPACE MANIPULATION OF ELECTRON BEAMS WITH DISPERSION ELEMENT 27 3.3.1 Transverse-to-longitudinal emittance exchange 27 3.3.2 Laser-beam interaction 31 3.3.3 Compression of a chirped beam in a chicane magnet 32 3.3.4 Frequency upconversion and high harmonic generation 34 3.4 CONCLUSIONS 36 REFERENCES 37 CHAPTER 4 GENERATION OF ULTRASHORT ELECTRON BUNCHES FROM AN RF PHOTOINJECTOR 40 4.1 INTRODUCTION 40 4.2 BUNCH LENGTH AND BUNCHING FACTOR 41 4.3 BEAM DYNAMICS OF ULTRASHORT BUNCHES IN AN RF PHOTOINJECTOR 44 4.3.1 Field distribution and electron motion 44 4.3.2 Evolution of an ultrashort electron bunch 47 4.3.3 Evolution of an ultrashort electron-pulse train 51 4.4 ELECTRON ACCELERATION WITH INJECTION PHASE COMPENSATION 54 4.4.1 Schematic of injection phase compensation 54 4.4.2 Single-bunch acceleration with full phase compensation 55 4.4.3 Multi-bunch acceleration with partial phase compensation 59 4.4.4 Multi-bunch acceleration with full phase compensation 61 4.5 CONCLUSION 63 REFERENCES 65 CHAPTER 5 GENERATION AND RADIATION OF PHZ REPETITIVE HOLLOW ELECTRON BUNCHES 68 5.1 INTRODUCTION 68 5.2 RADIAL DEPENDENCE OF RF ACCELERATION 70 5.2.1 Radially dependent RF acceleration fields 70 5.2.2 Spatial transformation of a short electron beam 72 5.3 RADIATION AND BUNCHING FACTOR OF DENSITY MODULATED BEAM 73 5.3.1 Bunching factor of an arbitrarily shaped electron beam 74 5.3.2 Bunching factor of an electron beam with a small beam radius 76 5.4 GENERATION OF STRUCTURED HOLLOW ELECTRON BEAM 77 5.4.1 Multi-ring structured photocathode 77 5.4.2 PHz structured hollow electron beam 80 5.4.3 Bunching factors of solid and hollow structured electron beams 86 5.5 CONCLUSION 90 REFERENCES 91 CHAPTER 6 BROADLY TUNABLE HIGH POWER THZ FEL AMPLIFIER 95 6.1. INTRODUCTION 95 6.2. THZ SEED LASER 96 6.2.1 Nonlinear wavelength conversion processes for generating THz radiation 96 6.2.2 THz parameter amplifier 97 6.2.3 Electron-laser interaction 98 6.3. THZ FEL AMPLIFIER 100 6.3.1 System layout 100 6.3.2 Temporal synchronization of THz seed and bunch beam 102 6.3.3 Seed laser and electron microbunching 103 6.3.4 Undulator tapering 104 6.3.5 Spectral tunability and power amplification of the system 104 6.4. CONCLUSION 106 REFERENCES 107 CHAPTER 7 CONCLUSION AND FUTURE WORK 110 7.1 CONCLUSION 110 7.2 FUTURE WORK: CONTAMINATION-FREE EUV SOURCE 112 REFERENCE 114

    Chapter 1

    [1] E. M. Rowe and F. E. Mills, Tantalus I: A Dedicated Storage Ring Synchrotron Radiation Source, Particle Accelerators, Vol. 4 (1973); pages 211-227.
    [2] Zhao, Z. T., 2010, Rev. Accel. Sci. Techol. 03, 57.
    [3] J.M.J. Madey. “Stimulated emission of bremsstrahlung in a periodic magnetic field.”, J. Appl. Phys., 42:1906, 1971.
    [4] W. Ackermann, et al., Nat. Photonics 1, 336 (2007).
    [5] P. Emma, et al., Nat. Photonics 4, 641 (2010).
    [6] E. Allaria, et al., Nat. Photonics 6, 699 (2012).
    [7] T. Ishikawa, et al., Nat. Photonics 6, 540 (2012).
    [8] A. Gover, Phys. Rev. ST Accel. Beams 8, 030701 (2005).
    [9] A. Gover, E. Dyunin, Y. Lurie, Y. Pinhasi, M.V. Krongauz, Phys. Rev. ST Accel. Beams 8, 030702 (2005).
    [10] M. Arbel, A. Gover, A. Eichenbaum, H. Kleinman, Phys. Rev. ST Accel. Beams 17, 020705 (2014).
    [11] L. M. Young, Los Alamos National Laboratory Report No. LA-UR-96-1835, revised April 22, 2003.
    [12] K. Floettmann, “ASTRA, A Space Charge Tracking Algorithm” DESY, Notkestr.85, 22603 Hamburg, Germany (Version 3.0, October 2011).

    Chapter 2

    [1] H. Motz, J. Appl. Physics, Vol 22, No. 5 (1951) 527.
    [2] R. H. Dicke, Phys. Rev. 93, 99.
    [3] K. J. Kim, Phys. Rev. Lett. 57, 1871.

    Chapter 3

    [1] "The Nobel Prize in Physics 1921". Nobel Foundation. Retrieved 2013-03-16.
    [2] "The Nobel Prize in Physics 1923". Nobel Foundation. Retrieved 2015-03-29.
    [3] X. Délen, F. Balembois, O. Musset, P. Georges, Journal of the Optical Society of America B Vol. 28, Issue 1, pp. 52-57 (2011).
    [4] H. Tomizawa, H. Dewa, H. Hanaki, F. Matsui, Quantum Electronics 37 (8) 697-705 (2007).
    [5] M. Ferrario et al., Nucl. Inst. Meth. A, 637 (2011).
    [6] E. Chiadroni, et al., Journal of Physics: Conference Series 359 (2012) 012018.
    [7] Z. M. Yusof, M. E. Conde, W. Gai, Phys. Rev. Lett. 93. 114801 (2004).
    [8] L.Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, C. Ropers, Nat. Phys., Vol. 10, p.432-436 (2014).
    [9] F. H. Chao, C. H. Chen, Y. C. Huang, P. J. Chou, Phys. Rev. ST Accel. Beams 18, 051301 (2015).
    [10] J. Wu, Z. Huang, P. Emma, ”Analysis of Longitudinal Space Charge Effects With Radial Dependence”, SLAC-PUB-11448.
    [11] M. Reister, “Theory and design of charged particle beams”, John Wiley and Sons, Inc., New York, 1994.
    [12] P. Emma et al, Phys. Rev. ST Accel. Beams 9,100702 (2006).
    [13] M. Cornacchia, P. Emma, Phys. Rev. ST Accel. Beams 5, 084001 (2002).
    [14] P. Emma, Z. Huang, K.-J. Kim, P. Piot, Phys. Rev. ST Accel. Beams 9, 100702 (2006).
    [15] Y.-E Sun, P. Piot, A. Johnson, A. H. Lumpkin, T. J. Maxwell, J. Ruan, and R. Thurman-Keup, Phys. Rev. Lett. 105, 234801 (2010).
    [16] Ben-Zvi, I., L. D. Mauro, S. Krinsky, M. White, and L. Yu, Nucl. Instrum. Methods Phys. Res., Sect. A 304, 181 (1991).
    [17] L. H. Yu, 1991, Phys. Rev. A 44, 5178 (1991).
    [18] L. H. Yu, et al. Science 289, 932–934 (2000).
    [19] E. Allaria and G. De Ninno. “ in Proceedings of the 11th European Particle Accelerator Conference”, mopc002, 2008.
    [20] E. Allaria, et al., 2013, Nat. Photonics 7, 913.
    [21] G. Stupakov, Phys. Rev. Lett. 102, 074801 (2009).
    [22] D. Xiang, G. Stupakov, Phys. Rev. ST Accel. Beams 12, 080701 (2009).
    [23] D. Xiang, et al., Phys. Rev. Lett. 105, 114801 (2010).
    [24] Y. C. Wang, “THz Superradiant Smith-Purcell FEL driven by laser-modulated keV electrons”, M.S. thesis (2015).
    [25] P. C. Wang, “Single- and two-color laser generation fron eatoln-out-coupled Nd:YVO4/Nd:GdVO4 laser”, M.S thesis (2015).
    [26] C. Y. Wu, “UV THz-beat-wave laser”, M.S. thesis (2011).
    [27] A. L. Cavalieri et al., Nature (London) 449, 1029 (2007).
    [28] P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, Phys. Rev. Lett. 97, 247402 (2006).
    [29] S. Neppl, Physik Department E20, Technische Universitat Munchen (TUM), report, 2012.
    [30] E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, Science 317, 769 (2007).
    [31] E. Hemsing, G. Stupakov, D. Xiang, and A. Zholents, Rev. Mod. Phys. 86, 897 (2014).

    Chapter 4

    [1] A. Gover, Phys. Rev. ST Accel. Beams 8, 030701 (2005).
    [2] Y. C. Huang, Appl. Phys. Lett. 96, 231503 (2010).
    [3] J. G. Neumann, P. G. O’Shea, D. Demske,W. S. Graves, B. Sheehy, H. Loos, and G. L. Carr, Nucl. Instrum. Methods Phys. Res., Sect. A 507, 498 (2003).
    [4] F. H. Chao, C. H. Chen, Y. C. Huang, and P. J. Chou, in Proceedings of the 4th International Particle Accelerator Conference, IPAC-2013, Shanghai, China, 2013, edited by N. Zhao (JACoW, Shanghai, China, 2013), pp. 3109–3111.
    [5] F. H. Chao, C. H. Chen, K. Y. Huang, and Y. C. Huang, in Proceedings of the 33rd Free Electron Laser Conference, Shanhai, 2011 (JACoW, Shanghai, 2011), pp. 3109–3111.
    [6] M. Boscolo, M. Ferrario, I. Boscolo, F. Castelli, and S. Cialdi, Nucl. Instrum. Methods Phys. Res., Sect. A 577, 409 (2007).
    [7] R. K. Li and C. X. Tang, Nucl. Instrum. Methods Phys. Res., Sect. A 605, 243 (2009).
    [8] R. K. Li, C. X. Tang, Y. Du, W. Huang, Q. Du, J. Shi, L. Yan, and X. Wang, Rev. Sci. Instrum. 80, 083303 (2009).
    [9] J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. M. Castro, S.M. Gierman, H. Loos, and P. M. Weber, Appl. Phys. Lett. 89, 184109 (2006).
    [10] P. Musumeci, J. T. Moody, and C. M. Scoby, Ultramicroscopy 108, 1450 (2008).
    [11] Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura, Appl. Phys. Lett. 98, 251903 (2011).
    [12] J. Yang, K. Kan, T. Kondoh, Y. Yoshida, K. Tanimura, and J. Urakawa, Nucl. Instrum. Methods Phys. Res., Sect. A 637, S24 (2011).
    [13] J. Yang, N. Naruse, K. Kan, T. Kondoh, Y. Yoshida, and K. Tanimura, in Proceedings of the 3rd International Particle Accelerator Conference, IPAC-2012, New Orleans, LA, 2012 (JACoW, New Orleans, LA, 2012), pp. 4170–4174.
    [14] L. M. Young, Los Alamos National Laboratory Report No. LA-UR-96-1835, revised April 22, 2003.
    [15] M. J. de Loos, S. B. van der Geer, Y.M. Saveliev, V. M. Pavlov, A. J.W. Reitsma, S.M. Wiggins, J. Rodier, T. Garvey, and D. A. Jaroszynski, Phys. Rev. ST Accel. Beams, 9, 084201 (2006).
    [16] M. Khojoyan, M. Krasilnikov, and F. Stephan, in Proceedings of the 5th International Particle Accelerator Conference, IPAC-2014, Dresden, 2014 (JACoW, Dresden, 2011), pp. 2958–2961.
    [17] C. Limborg-Deprey, SLAC, 2275 Sand Hill Road, MS18, Menlo Park, USA, Report No. SLAC-PUB-11604.
    [18] I. V. Bazarov, D. G. Ouzounov, B.M. Dunham, S. A. Belomestnykh, Y. Li, X. Liu, R. E. Meller, J. Sikora, and C. K. Sinclair, Phys. Rev. ST Accel. Beams 11, 040702 (2008).
    [19] G. Penco, M. Danailov, A. Demidovich, E. Allaria, G. De Ninno, S. Di Mitri, W. M. Fawley, E. Ferrari, L. Giannessi, and M. Trovó, Phys. Rev. Lett. 112, 044801 (2014).
    [20] L. Serafini, Nucl. Instrum. Methods Phys. Res., Sect. A 340, 40 (1994).
    [21] K. J. Kim, Nucl. Instrum. Methods Phys. Res., Sect. A 275, 201 (1989).
    [22] D. T. Palmer, X. J. Wang, R. H. Miller, M. Babzien, I. Ben-Zvi, C. Pellegrini, J. Sheehan, J. Skaritka, H.Winick, M. Woodle, and V. Yakimenko, in Proceedings of the
    Particle Accelerator Conference, Vancouver, BC, Canada, 1997 (JACow, New York, 1997), p. 2687.
    [23] J. H. Billen and L. M. Young, Los Alamos National Laboratory Report No. LA-UR-96-1834, revised February 6, 2003.
    [24] H. Tomizawa, H. Dewa, A. Mizuno, T. Taniuchi, and H. Hanaki, in Proceedings of the 32nd Free Electron Laser Conference, Malmö, Sweden (JACow, Sweden, 2010), pp. 640–643.
    [25] A. L. Cavalieri et al., Nature (London) 449, 1029 (2007).
    [26] P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, Phys. Rev. Lett. 97, 247402 (2006).
    [27] S. Neppl, Physik Department E20, Technische Universitat Munchen (TUM), report, 2012.
    [28] E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, Science 317, 769 (2007).
    [29] M. Kempe andW. Rudolph, Phys. Rev. A 48, 4721 (1993).
    [30] H. Nosatot, T. Itatanit, M. Murakawat, T. Higuchit, and H. Noguchi, IEEE International Conference on Systems, Man, and Cybernetics, IEEE SMC-2014, San Diego, 2004 (IEEE, San Diego, CA, 2014), pp. 3675–3679).
    [31] P. Y. Madec, in Proceedings of SPIE 2012, San Diego, 2012 (SPIE, San Diego, CA, 2014), Vol. 8447, pp. 844705-1–844705-18.

    Chapter 5

    [1] A. Gover, Phys. Rev. ST Accel. Beams 8, 030701 (2005).
    [2] A. Gover, E. Dyunin, Y. Lurie, Y. Pinhasi, M.V. Krongauz, Phys. Rev. ST Accel. Beams 8, 030702 (2005).
    [3] M. Arbel, A. Gover, A. Eichenbaum, H. Kleinman, Phys. Rev. ST Accel. Beams 17, 020705 (2014).
    [4] P. Zhang, L.K. Ang, A. Gover, Phys. Rev. ST Accel. Beams 18, 020702 (2015).
    [5] D. Yu. Sergeeva, A. A. Tishchenko, and M. N. Strikhanov, Phys. Rev. ST Accel. Beams 18, 052801 (2015).
    [6] H. L. Andrews et al., Phys. Rev. ST Accel. Beams 17, 052802 (2014).
    [7] J. Breuer, R. Graf, A. Apolonski, P. Hommelhoff, Phys. Rev. ST Accel. Beams 17, 021301 (2014).
    [8] P. Gorham, D.P. Saltzberg, P. Schoessow, W. Gai, J.G. Power, R. Konecny, M.E. Conde, Phys. Rev. E 62, 8590 (2000).
    [9] T.Y. Alekhina, A.V. Tyukhtin, Phys. Rev. ST Accel. Beams 17, 071302 (2014).
    [11] T. Aumeyr, M. G. Billing, L. M. Bobb, B. Bolzon, E. Bravin, P. Karataev, K. Kruchinin, T. Lefevre, and S. Mazzoni, Phys. Rev. ST Accel. Beams 18, 042801 (2015).
    [12] L.G. Sukhikh, G. Kube, S. Bajt, W. Lauth, Y.A. Popov, A.P. Potylitsyn, Phys. Rev. ST Accel. Beams 17, 112805 (2014).
    [13] I. Nozawa, K. Kan, J. Yang, A. Ogata, T. Kondoh, M. Gohdo, K. Norizawa, H. Kobayashi, H. Shibata, S. Gonda, and Y. Yoshida, Phys. Rev. ST Accel. Beams 17, 072803 (2014).
    [14] M. Arbel, A. Abramovich, A. L. Eichenbaum, A. Gover, H. Kleinman, Y. Pinhasi, and I. M. Yakover, Phys. Rev. Lett. 86, 2561 (2001).
    [15] R. Bonifacio, L. De Salvo Souza, P. Pierini, and N. Piovella, Nucl. Inst. Meth. A 296, 358 (1990).
    [16] T. Watanabe, X. J. Wang, J. B. Murphy, J. Rose, Y. Shen, T. Tsang, L. Giannessi, P. Musumeci, S. Reiche, Phys. Rev. Lett., 98, 034802 (2007).
    [17] Allaria, E., et al., Nat. Photonics 7, 913 (2013)
    [18] L.H. Yu et al., Science 289, 932 (2000).
    [19] E. Hemsing, G. Stupakov, D. Xiang, and A. Zholents, Rev. Mod. Phys. 86, 897 (2014).
    [20] G. Wang, W. Zhang, G. Wu, D. Dai, X. Yang, C. Feng, M. Zhang, H. Deng, D. Wang, Z. Zhao, Phys. Rev. ST Accel. Beams 18, 060701 (2015).
    [21] E. Hemsing, D. Xiang, M. Dunning, S. Weathersby, C. Hast, T. Raubenheimer, Phys. Rev. ST Accel. Beams 17, 010703 (2014).
    [22] E. Hemsing, D. Xiang, Phys. Rev. ST Accel. Beams 16, 010706 (2013).
    [23] M. Dunning, C. Hast, E. Hemsing, K. Jobe, D. McCormick, J. Nelson, T. O. Raubenheimer, K. Soong, Z. Szalata, D. Walz, S. Weathersby, D. Xiang, Phys. Rev. Lett. 109, 074801 (2012).
    [24] D. Xiang, Z. Huang, G. Stupakov, Phys. Rev. ST Accel. Beams 12, 060701 (2009).
    [25] D. Xiang, E. Colby, M. Dunning, S. Gilevich, C. Hast, K. Jobe, D. McCormick, J. Nelson, T. O. Raubenheimer, K. Soong, G. Stupakov, Z. Szalata, D. Walz, S. Weathersby, M. Woodley, and P.-L. Pernet, Phys. Rev. Lett. 105, 114801 (2010).
    [26] Z. Wang, D. Huang, Q. Gu, Z. Zhao, D. Xiang, Phys. Rev. ST Accel. Beams 17, 090701 (2014).
    [27] E. Hemsing, M. Dunning, C. Hast, T.O. Raubenheimer, S. Weathersby, D. Xiang, Phys. Rev. ST Accel. Beams 17, 070702 (2014).
    [28] E. Hemsing, M. Dunning, B. Garcia, C. Hast, T. Raubenheimer, G. Stupakov, D. Xiang, Nat. Photonics 10, 1038 (2016)
    [29] F. H. Chao, C. H. Chen, Y. C. Huang, P. J. Chou, Phys. Rev. ST Accel. Beams 18, 051301 (2015).
    [30] Y. Gao, L. Feng, J. Hao, S. Huang, L. Lin, X. Luo, S. Quan, F. Wang, Z. Wang, K. Liu, J. Chen, in Proceedings of International Particle Accelerator Conference, Richmond, USA, 2015 (JACow, Richmond, VA, 2015).
    [31] A. Angelovski, M. Kuntzsch, M.K. Czwalinna, A. Penirschke, M. Hansli, C. Sydlo, V. Arsov, S. Hunziker, H. Schlarb, M. Gensch, V. Schlott, T. Weiland, R. Jakoby, Phys. Rev. ST Accel. Beams 18, 012801 (2015).
    [32] C. Gulliford, A. Bartnik, I. Bazarov, L. Cultrera, J. Dobbins, B. Dunham, F. Gonzalez, S. Karkare, H. Lee, H. Li, Y. Li, X. Liu, J. Maxson, C. Nguyen, K. Smolenski, Z. Zhao, Phys. Rev. ST Accel. Beams 16, 073401 (2013).
    [33] M. Ferrario et al., Nucl. Inst. Meth. A, 637 (2011).
    [34] Dmitry Yu. Shchegolkov and Evgenya I. Simakov, Phys. Rev. ST Accel. Beams 17, 041301 (2014).
    [35] M. Cornacchia and P. Emma, Phys. Rev. ST Accel. Beams 5, 084001 (2002).
    [36] P. Emma, Z. Huang, K.-J. Kim, P. Piot, Phys. Rev. ST Accel. Beams 9, 100702 (2006).
    [37] D. Xiang and A. Chao, Phys. Rev. ST Accel. Beams 14, 114001 (2011).
    [38] Y.E Sun, P. Piot, A. Johnson, A. H. Lumpkin, T. J. Maxwell, J. Ruan, R. Thurman-Keup, Phys. Rev. Lett. 105, 234801 (2010).
    [39] K. Floettmann, “ASTRA, A Space Charge Tracking Algorithm” DESY, Notkestr.85, 22603 Hamburg, Germany (Version 3.0, October 2011).
    [40] K. J. Kim, Nucl. Instrum. Methods Phys. Res., Sect. A 275, 201 (1989).
    [41] K. Floettmann, Phys. Rev. ST Accel. Beams 18, 064801 (2015)
    [42] D.T. Palmer, X.J. Wang, R.H. Miller, M. Babzien, I. Ben-Zvi, C. Pellegrini, J. Sheehan, J. Skaritka, H. Winick, M. Woodle, V. Yakimenko, in Proceedings of Particle Acceleration Conference, Vancouver, 1997, p. 2687, (1997).
    [43] A.P. Potylitsyn, M.I. Ryazanov, M.N. Strikhanov, A.A. Tishchenko, Diffraction Radiation from Relativistic Particles (Springer, Berlin Heidelberg, 2010).
    [44] J.W. Goodman, “Introduction to Fourier Optics” (Third edition, Roberts & Company publishers, Englewood, 2005).
    [45] A. A. Tseng, K. Chen, C.D. Chen, K.J. Ma, IEEE Transactions 26.2 (2003).
    [46] C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, H. Launois, Applied Surface Science 164.1 (2000).
    [47] Z. Zhang and C. Tang, Phys. Rev. ST Accel. Beams 18, 053401 (2015).
    [48] C.X. Wang, K.J. Kim, M. Ferrario, A. Wang, Phys. Rev. ST Accel. Beams 10, 104201 (2007).
    [49] V. Kumar, Amer. Jour. of Phys., Vol. 77, No. 8, p.737-p.741 (2009).

    Chapter 6

    [1] T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, Optics Express 16, 6471-6478 (2008).
    [2] P. R. Smith, D. H. Auston, M. C. Nuss, IEEE J. Quantum Electron. 24, 255-256 (1988).
    [3] X.C. Zhang, B.B. Hu, J.T. Darrow, D.H. Auston, Appl. Phys. Lett. 56, 1011-1013 (1990).
    [4] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, Science, 264, 553-556 (1994).
    [5] H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone, Phys. Rev. Lett. 71, 2725 (1993).
    [6] C.A.J. van der Geer et al., in Proceedings of European Particle Accelerator Conference (EPAC 92), Berlin, Germany, 504-506 (1992).
    [7] http://www.differ.nl/felix/facilities/
    [8] http://www.jlab.org/FEL/
    [9] http://www.hzdr.de/db/Cms?pNid=471
    [10] http://clio.lcp.u-psud.fr/clio_eng/clio_eng.htm
    [11] N.A. Vinokurov et al., in Proceedings of RuPAC-2010, Protvino, Russia, 133-135 (2010).
    [12] J.S. Sokolowski et al., PAC’97, p. 906, (1997).
    [13] G.N. Kulipanov et al. Terahertz Science and Technology 1, 107 (2008).
    [14] B. Qin, L. Yang, X.L. Liu, K.F. Liu, J. Yang, P. Tan, Y.Q. Xiong, X. Lei, Y.B. Wang, in Proceedings of FEL2013, New York, 372-375 (2013).
    [15] Ailin Wu, Qika Jia, Faya Wang, Juhao Wu, in Proceedings of FEL 2012, Nara, Japan, 488-490 (2012).
    [16] http://sbfel3.ucsb.edu/ctst/Top.html/
    [17] Y.C. Huang, Appl. Phys. Lett, 96, 231503 (2010).
    [18] C. Sung, S. Ya. Tochitsky, S. Reiche, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, Phys. Rev. ST Accel. Beams 9, 120703 (2006).
    [19] K. Floettmann, “ASTRA, A Space Charge Tracking Algorithm” DESY, Notkestr.85, 22603 Hamburg, Germany (Version 3.0, October 2011).
    [20] S. Reiche, “GENESIS User Manual”, http://corona.physics.ucla.edu/~reiche/.
    [21] Y. C. Huang, T. D. Wang, Y. H. Lin, C. H. Lee, M. Y. Chuang, Y. Y. Lin, and F. Y. Lin, Optics Express 19, 24577-24582 (2011).
    [22] J. Hebling, A. G. Stepanov G. Alm´ asi, B. Bartal and J. Kuhl, Appl. Phys. B 78, 593–599 (2004)
    [23] K. Kawase, J. Shikata and H. Ito2, J. Phys. D: Appl. Phys. 35, R1–R14, (2002).
    [24] M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Applied Physics Letters 26, 418 (1975).
    [25] T. D. Wang, Y. Y. Lin, S. Y. Chen, A. C. Chiang, S. T. Lin, and Y. C. Huang, Optics Express 16, 12571-12576 (2008).
    [26] S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase and H. Minamide, Scientific Reports, 4, 5045-1-6, (2014).
    [27] E. Hemsing, G. Stupakov, D. Xiang, and A. Zholents, Rev. Mod. Phys. 86, 897 (2014).
    [28] B.E.A. Saleh, M.C. Teich, “Fundamentals of photonics” (Second edition, Wiley-Interscience, A John Wiley & Sons, Inc., Publication, 2007).
    [29] D. T. Palmer, X. J. Wang, R. H. Miller, M. Babzien, I. Ben-Zvi, C. Pellegrini, J. Sheehan, J. Skaritka, H. Winick, M. Woodle, V. Yakimenko, in Proceedings of Particle Acceleration Conference, Vancouver, 1997, p. 2687, (1997).
    [30] A. Gover, Phys. Rev. ST Accel. Beams 8, 030701 (2005).
    [31] M. Arbel, A. Gover, A. Eichenbaum, H. Kleinman, Phys. Rev. ST Accel. Beams 17, 020705 (2014). [32] W. M. Fawley, Z. Huang, K.J. Kim, N. A. Vinokurov, Nucl. Inst. Meth. A, 483, 537–541(2002).
    [33] G. Dattoli, S. Pagnutti, P. L. Ottaviani, and V. Asgekar, Phys. Rev. ST Accel. Beams 15, 030708 (2012).

    Chapter 7

    [1] G. E. Moore, Electronics, 38, 8, (1965).
    [2] B. W. Smith, Y. Fan, M. Slocum, L. Zavyalova, in Proceedings of SPIE 5754, Optical Microlithography XVIII, 141 (2005).
    [3] P. D. Bisschop et al., in Proceedings of SPIE 7973, 79730B (2011).
    [1] Y. C. Huang, Appl. Phys. Lett. 96, 231503 (2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE