研究生: |
傅泰龍 Fu, Tai-Lung |
---|---|
論文名稱: |
具邱克切換式整流器前級之切換式磁阻馬達驅動系統 A SWITCHED-RELUCTANCE MOTOR DRIVE WITH ĆUK SWITCH-MODE RECTIFIER FRONT-END |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
劉添華
Liu, Tian-Hua 謝欣然 Shieh, Hsin-Jang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 137 |
中文關鍵詞: | 切換式磁阻馬達 、切換式整流器 、功因校正 、邱克轉換器 、無橋式 、升壓 、電流控制 、速度控制 、數位訊號處理器 |
外文關鍵詞: | switched-reluctance motor, switch-mode rectifier, power factor correction, Ćuk converter, bridgeless, voltage boosting, current control, speed control, DSP |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發以數位訊號處理器為主具邱克切換式整流器前級之切換式磁阻馬達驅動系統。首先,在探究切換式磁阻馬達之結構、物理建模、常用轉換器及動態控制後,設計實作一具二極體整流器前級之切換式磁阻馬達驅動系統。由詳細實測評估驗證其良好之操控性能,含加速、減速及反轉等操作特性。此外,更藉由進一步之實測觀察,以體會影響二極體整流器供電切換式磁阻馬達驅動系統操控性能之關鍵事務,重要特性含換相移位之功效、變動直流鏈電壓之效應、以及交流入電電力品質等。
接著,在探究一些可能升-降壓型切換式整流器之比較特徵後,選擇建置一邱克切換式整流器作為切換式磁阻馬達驅動系統之入電前級。其良好直流輸出電壓及交流入電電力品質得益於輸入及輸出側均連續之電流。所建切換式整流器供電切換式磁阻馬達驅動系統,其電路設計、動態建模、及採行斜率比較電流控制與磁滯電流控制之性能比較評估等均有詳實介紹。
最後,為了提升能量轉換效率,本論文開發一無橋式邱克切換式整流器。並從事以二極體整流器、標準邱克切換式整流器、及無橋式邱克切換式整流器供電切換式磁阻馬達驅動系統之操控性能實測比較評估。
This thesis is mainly concerned with the development of a digital signal processor (DSP) based switched-reluctance motor (SRM) drive with single-phase Ćuk switch mode rectifier (SMR) front-end. After exploring the structure, physical modeling, commonly used converter and dynamic controls for SRM, a standard diode rectifier fed SRM drive is designed and implemented. The detailed experimental evaluation verifies its satisfactory driving performance in acceleration, deceleration and reversible operations. In addition, further experimental observations are conducted to comprehend some key issues affecting the operating characteristics of SRM drive powered by diode rectifier under higher speed and heavier load. The major observed characteristics include effectiveness of commutation instant shift, effects of DC-link voltage variation and AC input power quality.
Next, some possible buck-boost SMR schematics are comparatively explored. Then a Ćuk SMR is established and employed as the front-end of the developed SRM drive. Well regulated DC output voltage and good AC input line drawn power quality are obtained thanks to its continuous currents at both input and output sides. The circuit design, dynamic modeling and performance comparative assessment of the established SMR-fed SRM drive using ramp-comparison current-controlled PWM (RC-CCPWM) and hysteresis current-controlled PWM (H-CCPWM) schemes are all conducted in detail.
Finally, for improving the energy conversion efficiency, a bridgeless Ćuk SMR is further developed. And the SRM drives fed by diode rectifier, standard Ćuk SMR, and bridgeless Ćuk SMR are comparatively evaluated.
A. SRM Basics
[1] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
[2] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
[3] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1079-1087, 1995.
[4] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[5] P. C. Desai, M. Krishnamurthy, N. Schofield and Ali Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, 2010.
[6] D. H. Lee, T. H. Pham and J. W. Ahn, “Design and operation characteristics of four-two pole high-speed SRM for torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3637-3643, 2013.
[7] H. Y. Yang, Y. C. Lim and Hyun-Chul Kim, “Acoustic noise/vibration reduction of a single-phase SRM using skewed stator and rotor,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4292-4300, 2013.
[8] R. Madhavan and B. G. Fernandes, “Axial flux segmented SRM with a higher number of rotor segments for electric vehicles,” IEEE Trans. Ind. Electron., vol. 28, no. 1, pp.203-213, 2013.
[9] H. Arihara and Kan Akatsu, “Basic properties of an axial-type switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 49, no. 1, pp. 59-65, 2013.
[10] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012.
[11] A. Chiba, M. Takeno, N. Hoshi, M. Takemoto, S. Ogasawara and M. A. Rahman, “Consideration of number of series turns in switched-reluctance traction motor competitive to HEV IPMSM,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2333-2340, 2012.
[12] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[13] B. Bilgin, A. Emadi and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, 2013.
[14] K. Kiyota, T. Kakishima, H. Sugimoto and A. Chiba, “Comparison of the test result and 3D-FEM analysis at the knee point of a 60 kW SRM for a HEV,” IEEE Trans. Magn., vol. 49, no. 5, pp. 2291-2294, 2013.
[15] M. Takeno, A. Chiba, N. Hoshi, S. Ogasawara, M. Takemoto and M. A. Rahman, “Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 48, no. 4, pp. 1327-1334, 2012.
[16] S. Méndez, A. Martínez, W. Millán, C. E Montaño and F. Pérez-Cebolla, “Design, characterization, and validation of a 1-kW AC self-excited switched reluctance generator,” IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 846-855, 2014.
[17] P. Andrada, B. Blanqué, E. Martínez and M. Torrent, “A novel type of hybrid reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 469-476, 2014.
[18] K. Kiyota, T. Kakishima and A. Chiba, “Comparison of test result and design stage prediction of switched reluctance motor competitive to 60 kW rare-earth PM motor,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5712-5721, 2014.
B. Converters Circuits
[19] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991.
[20] J. W. Ahn, J. Liang, and D. H. Lee, "Classification and analysis of switched reluctance converters," JEET, vol. 5, pp. 571-579, Nov 2010.S.
[21] FCAS20DN60BB smart power module for SRM, www.fairchildsemi.com/ds/ FC/FCAS20DN60BB.pdf.
[22] IHCS22R60CE Two Phase Switched Reluctance Drives, http://www.lspst.com/ 01_product/sil.asp?pageNum=1&subNum=1&code=1&BBS=product.
[23] M. Ehsani, J. T. Bass, T. J. E. Miller and R. L. Steigerwald, “Development of a unipolar converter for variable reluctance motor drives,” IEEE Trans. Ind. Appl., vol. IA-23, no. 3, pp. 545-553, 1992.
[24] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
[25] X. D. Xue, K. W. E. Cheng and Y. J. Bao, “Control and integrated half bridge to winding circuit development for switched reluctance motors,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 109-116, 2014.
[26] Y. Murai, J. Cheng and M. Yoshida, “New soft-switched reluctance motor drive circuit,” IEEE Trans. Ind. Appl., vol. 35, no. 1, pp. 78-85, 1999.
[27] C. K. Pan, “A DSP-based soft-switching converter-fed switched reluctance motor drive,” Master Thesis, Department of Electrical Engineering National Tsing Hua University, ROC, 2003.
[28] S. Ebrahimi, V. Najmi, S. Ebrahimi and H. Oraee, “A ZVS-resonant bifilar drive circuit for SRM with a reduction in stress voltage of switches,” in Proc. IEEE ACEMP, 2011, pp. 125-128.
[29] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” in Proc. IEEE Elect. Power Appl., 1993, vol. 140, no. 5, pp. 316-322.
[30] K. Chimata, N. Hoshi and J. Haruna, “Characteristics of switched reluctance motor drive circuit with voltage boost function without additional reactor,” in Proc. IEEE PEDES, 2012, pp. 1-6.
[31] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IET Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[32] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 380-396, 2010.
[33] H. C. Chang, C. H. Chen, Y.H. Chiang, W. Y. Sean and C. M. Liaw, “Establishment and control of a three-phase switched reluctance motor drive using intelligent power modules,” IET Elect. Power Appl., vol. 4, no. 9, pp. 772-782, 2010.
[34] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
[35] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
[36] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[37] Z. Zhang, N. C. Cheung, K. W. E. Cheng, X. D. Xue, J. K. Lin and Y.J. Bao, ” Analysis and design of a cost effective converter for switched reluctance motor drives using component sharing,” in Proc. IEEE PESA, 2011, pp. 1-6.
[38] T. Nonaka, Y. Nakazawa, K. Ohyama, H. Fujii, H. Uehara and Y. Hyakutake, “Inverter improving motor efficiency of switched reluctance motor for electric vehicle,” in Proc. EPE-PEMC, 2013, pp. 1-8.
C. Modeling and Parameter Estimation of SRM
[39] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, pp. 714-722, 2000.
[40] V. Vujicic and S. N. Vukosavic, “A simple nonlinear model of te switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000.
[41] B. P. Loop and S. D. Sudoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003.
[42] K. I. Hwu, “Development of a switched reluctance motor drive”, Ph.D. Dissertation, Deparment of Electrical Engineering, National Tsing Hua University, ROC, 2001.
[43] O. Ichinokura, T. Onda, M. Kimura, T. Watanabe, T. Yanada and H. J. Guo, “Analysis of dynamic characteristics of switched reluctance motor based on SPICE,” IEEE Trans. Magn., vol. 34, no. 4, pp. 2147-2149, 1998.
[44] N. Khateeb, K. Muehlbauer and D. Gerling, “Dynamic modeling of the SRM using the macromodeling approach: comparison of simulation and experiment,” in Proc. IEEE EPE, 2009, pp. 1-9.
[45] C. Lin, W. Wang, M. McDonough, and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1051-1054, 2012.
[46] W. Ding, L. Liu, J. Lou, and Y. Liu, “Comparative studies on mutually coupled dual-channel switched reluctance machines with different winding connections,” IEEE Trans. Magn., vol. 49, no. 11, pp. 5574-5589, 2013.
[47] F. L. M. dos Santos, J. Anthonis, F. Naclerio, J. J. C. Gyselinck, H. Van der Auweraer and L. C. S. Góes, “Multiphysics NVH modeling: simulation of a switched reluctance motor for an electric vehicle,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 469-476, 2014.
[48] M. Ibrahim and P. Pillay, “A hybrid model for improved hysteresis loss prediction in electrical machines,” IEEE Trans. Ind. Appl., 2014, to appear.
[49] V. Valdivia, R. Todd, F. J. Bryan, A. Barrado, A. Lázaro and A. J. Forsyth, “Behavioral modeling of a switched reluctance generator for aircraft power systems,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2690-2699, 2014.
D. Commutation Instant Tuning
[50] R. Orthmann and H.P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” Proc. IEE Power Electron. and Applicat., vol. 6, pp. 20-25, 1993.
[51] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
[52] M. Rodrigues, P. J. Costa Branco and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
[53] J. J. Gribble, P. C. Kjaer, C. Cossar and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
[54] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[55] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[56] S. A. Fatemi, H. M. Cheshmehbeigi and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[57] J. Y. Chai, Y. W. Lin and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elec. Power Appl., vol. 153, no. 3, pp. 348-360, 2006.
[58] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Elect., vol. 5, no. 9, pp. 1813-1826, 2012.
E. Current Control
[59] P. Srinivas and P. V. N. Prasad, “Voltage control and hysteresis current control of a 8/6 switched reluctance motor,” in Proc. ICEMS, 2007, pp. 1557-1562.
[60] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[61] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[62] G. Gallegos-Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines” in Proc. IEEE IAS, 2002, vol. 2, pp. 1212-1218.
[63] I. Kioskeridis and C. Mademlis, “A unified approach for four-quadrant optimal controlled switched reluctance machine drives with smooth transition between control operations,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 301-306, 2009.
[64] Z. Lin, D. Reay, B. Williams and X. He, “High-performance current control for switched reluctance motors based on on-line estimated parameters,” IET Elect. Power Appl., vol. 4, no. 1, pp. 67-74, 2010.
[65] G. Schroder and J. Bekiesch, “Current control for the switched reluctance motor with enhanced performance,” in Proc. IEEE EPE, 2005, pp. 1-8.
[66] I. S. Manolas, A. X. Kaletsanos and S. N. Manias, “Nonlinear current control technique for high performance switched reluctance machine drives,” in Proc. PESC, 2008, pp. 1229-1234.
[67] M. T. Alrifai, J. H. Chow and D. A. Torrey, “Practical application of backstepping nonlinear current control to a switched-reluctance motor,” in Proc. IEEE ACC, 2000, vol. 1, pp. 594-599.
[68] S. K. Sahoo, S. K. Panda and J. X. Xu, “Direct torque controller for switched reluctance motor drive using sliding mode control,” in Proc. PEDS, 2005, vol. 2, pp. 1129-1134.
[69] S. K. Sahoo, S. K. Panda and J. X. Xu, “Application of spatial iterative learning control for direct torque control of switched reluctance motor drive,” in Proc. IEEE PES, 2007, pp. 1-7.
[70] S. K. Sahoo, S. Dasgupta, S. K. Panda and J. X. Xu, “A Lyapunov function-based robust direct torque controller for a switched reluctance motor drive system,” IEEE Trans. Power Electron., vol. 27, vol. 2, pp. 555-564, 2012.
F. Speed Control
[71] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[72] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IET Proc. Electric Power Appl., vol. 148, no. 4, pp. 345-352, 2001.
[73] M. T. Alrifai, J. H. Chow and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IET Proc. Elect. Power Appl., vol. 150, no. 2, pp. 193-200, 2003.
[74] C. Visa, G. Abba and R. Leonard, “Speed control of a switched reluctance motor using non-linear methods,” in Proc. IEEE SMC, 2002, vol. 5, pp. 1-6.
[75] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270.
[76] A. Karami-Mollaee, “Sliding mode control of switch reluctance motor without chattering,” in Proc. IEEE ICEE, 2013, pp. 1-5.
[77] J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” in Proc. IEEE ISIE, 2001, vol. 2, pp. 811-815.
[78] L. L. N. dos Reis, F. Sobreira, A. R. R. Coelho, O. M. Almeida, J. C. T. Campos and S. Daher, “Identification and adaptive speed control for switched reluctance motor using DSP” in Proc. COBEP, 2009, pp. 836-841.
[79] S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
[80] B. Singh, V. K. Sharma and S. S. Murthy, “Performance analysis of adaptive fuzzy logic controller for switched reluctance motor drive system,” in Proc. IEEE IAS, 1998, vol. 1, pp. 571-579.
[81] A. Tahour, A. G. Aissaoui and A.C. Megherbi, “Fuzzy PI control through optimization: a new method for PI control of switched reluctance motor,” in Proc. IEEE ICCS, 2012, pp. 1-7.
[82] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
G. Single-Phase Switch-Mode Rectifiers
[83] W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE SECON, 1998, pp. 348-353.
[84] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, vol. 3, pp. 749-755, 2003.
[85] K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori and F. Ueda, “A comparison of various buck-boost converters and their application to PFC,” in Proc. IEEE IECON, 2002, vol. 1, pp. 30-36.
[86] Y. S. Kim, W. Y. Sung and B. K. Lee, “Comparative performance analysis of high density and efficiency PFC topologies,” IEEE Trans. Power Electron., vol. 29, no. 6, pp.2666-2679, 2014.
[87] A. J. Sabzali, E. H. Ismail, M. A. Al-Saffar and A. A. Fardoun, “New bridgeless DCM Sepic and Ćuk PFC rectifiers with low conduction and switching losses,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 873-881, 2011.
[88] D. S. Lyrio Simonetti, J. Sebasti´an and J. Uceda, “The discontinuous conduction mode Sepic and ´Ćuk power factor preregulators: analysis and design,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 630-637, 1997.
[89] S. Hegde and A. Izadian, “A new SEPIC inverter: small signal modeling,” in Proc. IEEE IECON, 2013, pp. 240-245.
[90] E. Babaei and M. E. Seyed Mahmoodieh, “Calculation of output voltage ripple and design considerations of SEPIC converter,” IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1213-1222, 2014.
[91] D. C. Martins, “ZETA converter operating in continuous conduction mode using the unity power factor technique,” in Proc IET PEVSD, 1996, pp. 7-11.
[92] B. Singh and V. Bist, “A single sensor based PFC Zeta converter fed BLDC motor drive for fan applications,” in Proc IEEE PIC, 2012, pp. 1-6.
[93] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “A comparison between three proposed bridgeless Ćuk rectifiers and conventional topology for power factor correction,” in Proc. IEEE ICEST, 2010, pp. 1-6.
[94] M. Mahdavi and H. Farzaneh-Fard, “Bridgeless Ćuk power factor correction rectifier with reduced conduction losses,” IET Elect. Power Appl., vol. 5, no. 9, pp. 1733-1740, 2012.
[95] A. A. Fardoun, E. H. Ismail, A. J. Sabzali and M. A. Al-Saffar, “New efficient bridgeless Ćuk rectifiers for PFC applications,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3292-3301, 2012.
[96] V. Bist and B. Singh, “An adjustable-speed PFC bridgeless buck–boost converter-fed BLDC motor drive,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2665-2677, 2014.
[97] B. Singh and V. Bist, “Improved power quality bridgeless Ćuk converter fed brushless DC motor drive for air conditioning system,” IET Elect. Power Appl., vol. 6, no. 5, pp. 902-913, 2013.
H. Others
[98] Digital signal controller TMS320F28335 datasheet, http://www.ti.com/lit/gpn/ tms320f28335
[99] Y. C. Chang, “Development of a switched-reluctance generator and its application to the establishment of microgrid system” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2010.