研究生: |
張庭熏 Chang, Ting-Hsun |
---|---|
論文名稱: |
以電泳法孕核方式成長超奈米晶鑽石薄膜於矽基板與碳化鎢基板之研究 Growth of Ultrananocrystalline Diamond Films on Silicon and Tungsten Carbide Substrates Using Electrophoresis-deposited Nano-diamond Film as Nucleation Layer |
指導教授: |
戴念華
Tai, Nyan-Hwa 林諭男 Lin, I-Nan |
口試委員: |
李紫原
張立 陳登銘 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 電泳沉積法 、超奈米晶鑽石薄膜 |
外文關鍵詞: | Electrophoresis, Ultrananocryatalline diamond |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超奈米晶鑽石(ultrananocrystalline diamond films, UNCD)薄膜因兼具良好的物理化學性質及平坦的表面,在各方面應用皆優於傳統的微米晶鑽石薄膜。本研究先以電泳法沉積奈米鑽石顆粒於矽基板上,再經由微波電漿輔助化學氣相沉積系統(microwave plasma-enhanced chemical vapor deposition, MPECVD)成長UNCD。藉由掃描式電子顯微鏡(scanning electron microscopy, SEM)影像圖觀察鑽石顆粒沉積在矽基板上的分布情形與鑽石膜的表面形貌,以X光繞射分析其結構,並以電子場發射特性與拉曼光譜儀分析薄膜性質,由以上量測得知利用電泳法孕核所成長的UNCD與超音波震盪法孕核所得的UNCD具有相同的品質。此外,本實驗利用電泳法孕核沉積UNCD於矽奈米線陣列與碳化鎢基板,在矽奈米線陣列方面,不破壞矽奈米線的表面形貌,可有效達到孕核效果,於矽奈米線的尖端附著非常緊密且連續的鑽石顆粒,利於電子場發射特性。在碳化鎢基板方面,無論是電泳法孕核或超音波震盪法皆可成功的成長出UNCD。
In this work, we report the utilization of nano-diamond layer electrophoresis-deposited on Si to perform as a nucleation layer for growing ultra-nanocrystalline diamond (UNCD) film using microwave plasma-enhanced chemical vapor deposition (MPECVD) system. The morphology of the as-deposited diamond nanoparticles and UNCD films are studied by field emission scanning electron microscope (FESEM). Raman and electron field emission (EFE) studies reveal that the obtained UNCD films derived from electrophoresis possess the same performance as a nucleation layer obtained through the ultrasonication method. Moreover, we also demonstrate the growth of UNCD film onto Si nanowires (SiNWs) and tungsten carbide (WC) through the electrophoresis nucleation technique. Electrophoresis nucleation provides a better aligned SiNWs than ultrasonication technique. Enhanced EFE properties are also observed for UNCD nanoemitters on electrophoresis nucleated SiNWs. For the WC substrates, both ultrasonication and electrophoresis nucleations can promote the growth of UNCD films successfully. In addition, UNCD films on electrophoresis nucleated WC substrates also shows better EFE properties.
[1] A. M. Affoune, B. L. V. Prasad, H. Sato, and T. Enoki, "Electrophoretic Deposition of Nanosized Diamond Particles," Langmuir, Vol. 17, pp. 547-551, 2000.
[2] I. Zhitomirsky, "Cathodic electrophoretic deposition of diamond particles," Materials Letters, Vol. 37, pp. 72-78, 1998.
[3] T. Tsubota, S. Ida, N. Okada, M. Nagata, Y. Matsumoto, and N. Yatsushiro, "CVD diamond coating on WC-Co cutting tool using ECR MPCVD apparatus via electrophoretic seeding pretreatment," Surface and Coatings Technology, Vol. 169-170, pp. 262-265, 2003.
[4] R. F. Davis, "Diamond films and coatings: development, properties, and applications," New Jersey,Noyes Publications, 1993.
[5] P. W. May, "CVD diamond: a new technology for the future?," Endeavour, Vol. 19, pp. 101-106, 1995.
[6] H. Liu and D. S. Dandy, "Diamond chemical vapor deposition: Nucleation and Early Growth Stages," New Jersey,Noyes Publications, 1993.
[7] B. Dischler and C. Wild, "Low-pressure synthetic diamond: manufacturing and applications," Springer, 1998.
[8] T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond”, Encyclopedia of Nanoscience and Nanotechnology, California, American Scientific Publications , 2003.
[9] A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, "Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices," Diamond and Related Materials, Vol. 10, pp. 1952-1961, 2001.
[10] K. Yamanouchi, N. Sakurai, and T. Satoh, "SAW propagation characteristics and fabrication technology of piezoelectric thin film/diamond structure," in Ultrasonics Symposium, Montréal, Québec, Canada, 1989. Proceedings. Vol.1, pp. 351-354, 1989,
[11] J. Wang, M. A. Firestone, O. Auciello, and J. A. Carlisle, "Surface Functionalization of Ultrananocrystalline Diamond Films by Electrochemical Reduction of Aryldiazonium Salts," Langmuir, Vol. 20, pp. 11450-11456, 2004.
[12] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, "High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond," Science, Vol. 297, pp. 1670-1672, 2002 .
[13] F. J. Himpsel, J. A. Knapp, J. A. VanVechten, and D. E. Eastman, "Quantum photoyield of diamond(111) – A stable negative-affinity emitter," Physical Review B, Vol. 20, pp. 624, 1979.
[14] W. Zhu, G. P. Kochanski, and S. Jin, "Low-Field Electron Emission from Undoped Nanostructured Diamond," Science, Vol. 282, pp. 1471-1473, November 20, 1998.
[15] A. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, V. V. Zhirnov, E. I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, and N. Suetin, "Electron field emission for ultrananocrystalline diamond films," Journal of Applied Physics, Vol. 89, pp. 2958-2967, 2001.
[16] W. P. Kang, J. L. Davidson, Y. M. Wong, and K. Holmes, "Diamond vacuum field emission devices," Diamond and Related Materials, Vol. 13, pp. 975-981, 2004.
[17] D. M. Gruen, "Nanocrystalline diamond films," Annual Review of Materials Science, Vol. 29, pp. 211-259, 1999.
[18] E. Erlich and W. D. Hausel, "Diamond deposits: origin, exploration, and history of discovery," Littleton, CO,USA : Society for Mining, Metallurgy, and Exploration, 2002.
[19] P. W. Bridgman, "Synthetic diamonds," Scientific American, Vol. 193, 1955.
[20] W. G. Eversole, "Synthesis of diamond," U.S. Patent No. 3,030,188, 1962.
[21] J. C. Angus, H. A. Will, and W. S. Stanko, "Growth of Diamond Seed Crystals by Vapor Deposition," Journal of Applied Physics, Vol. 39, pp. 2915-2922, 1968.
[22] B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, "Vapor growth of diamond on diamond and other surfaces," Journal of Crystal Growth, Vol. 52, pp. 219-226, 1981.
[23] S. Matzumoto, Y. Sato, M. Kamo, and N. Setaka, "Vapor deposition of diamond particles from methane, " Japanese Journal of Applied Physics 2, Vol. 21, pp.183-185 ,1982.
[24] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, "Diamond synthesis from gas phase in microwave plasma," Journal of Crystal Growth, Vol. 62, pp. 642-644, 1983.
[25] D. M. Gruen, S. Liu, A. R. Krauss, J. Luo, and X. Pan, "Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions," Applied Physics Letters, Vol. 64, pp. 1502-1504, 1994.
[26] F. Cleri, et al., "On the electrical activity of sp2-bonded grain boundaries in nanocrystalline diamond," Europhysics Letters, Vol. 46,pp. 671-677, 1999.
[27] C. J. Rennick, A. G. Smith, J. A. Smith, J. B. Wills, A. J. Orr-Ewing, M. N. R. Ashfold, Y. A. Mankelevich, and N. V. Suetin, "Improved characterisation of C2 and CH radical number density distributions in a DC arc jet used for diamond chemical vapour deposition," Diamond and Related Materials, Vol. 13, pp. 561-568, 2004.
[28] T. G. McCauley, D. M. Gruen, and A. R. Krauss, "Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma," Applied Physics Letters, Vol. 73, pp. 1646-1648, 1998.
[29] J. R. Rabeau, P. John, J. I. B. Wilson, and Y. Fan, "The role of C2 in nanocrystalline diamond growth," Journal of Applied Physics, Vol. 96, pp. 6724-6732, 2004.
[30] N. Dubrovinskaia, L. Dubrovinsky, F. Langenhorst, S. Jacobsen, and C. Liebske, "Nanocrystalline diamond synthesized from C60," Diamond and Related Materials, Vol. 14, pp. 16-22, 2005.
[31] Ljubisa R.Radovic, "Chemistry and physics of carbon, " New York, Marcel Dekker, 29, 117, 2004.
[32] S. R. Sails, D. J. Gardiner, M. Bowden, J. Savage, and D. Rodway, "Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm," Diamond and Related Materials, Vol. 5, pp. 589-591, 1996.
[33] A. C. Ferrari and J. Robertson, "Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond," Physical Review B, Vol. 63, p. 121405, 2001.
[34] L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, "Tem characterization of nanodiamond thin films," Nanostructured Materials, Vol. 10, pp. 649-660, 1998.
[35] D. Zhou, D. M. Gruen, L. C. Qin, T. G. McCauley, and A. R. Krauss, "Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas," Journal of Applied Physics, Vol. 84, pp. 1981-1989, 1998.
[36] D. Zhou, T. G. McCauley, L. C. Qin, A. R. Krauss, and D. M. Gruen, "Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma," Journal of Applied Physics, Vol. 83, pp. 540-543, 1998.
[37] X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, "Low temperature growth of ultrananocrystalline diamond," Journal of Applied Physics, Vol. 96, pp. 2232-2239, 2004.
[38] D. M. Gruen, A. R. Krauss, C. D. Zuiker, R. Csencsits, L. J. Terminello, J. A. Carlisle, I. Jimenez, D. G. J. Sutherland, D. K. Shuh, W. Tong, and F. J. Himpsel, "Characterization of nanocrystalline diamond films by core-level photoabsorption," Applied Physics Letters, Vol. 68, pp. 1640-1642, 1996.
[39] S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, "Microstructure of ultrananocrystalline diamond films grown by microwave Ar-CH4 plasma chemical vapor deposition with or without added H2," Journal of Applied Physics, Vol. 90, pp. 118-122, 2001.
[40] M. A. Brewer, I. G. Brown, P. J. Evans, and A. Hoffman, "Diamond film growth on Ti-implanted glassy carbon," Applied Physics Letters, Vol. 63, pp. 1631-1633, 1993.
[41] S. Yugo, T. Kanai, T. Kimura, and T. Muto, "Generation of diamond nuclei by electric field in plasma chemical vapor deposition," Applied Physics Letters, Vol. 58, pp. 1036-1038, 1991.
[42] M. Ece, B. Oral, J. Patscheider, and K. H. Ernst, "Effect of organic precursors on diamond nucleation on silicon," Diamond and Related Materials, Vol. 4, pp. 720-724, 1995.
[43] Z. Sun, X. Shi, B. K. Tay, D. Flynn, X. Wang, Z. Zheng, and Y. Sun, "Low pressure polymer precursor process for synthesis of hard glassy carbon and diamond films," Diamond and Related Materials, Vol. 6, pp. 230-234, 1997.
[44] S. Schelz, C. F. M. Borges, L. Martinu, and M. Moisan, "Diamond nucleation enhancement by hydrofluoric acid etching of silicon substrate," Diamond and Related Materials, Vol. 6, pp. 440-443, 1997.
[45] M. Belmahi, F. Benedic, J. Bougdira, H. Chatei, M. Remy, and P. Alnot, "Influence of mechanical and chemical silicon surface preparation on diamond nucleation and growth in CH4/H2 system discharge," Surface and Coatings Technology, Vol. 106, pp. 53-59, 1998.
[46] R. H. Fowler and L. Nordheim, "Electron Emission in Intense Electric Fields," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 119, pp. 173-181, 1928.
[47] L. W. Nordheim, "The Effect of the Image Force on the Emission and Reflexion of Electrons by Metals," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 121, pp. 626-639, 1928.