簡易檢索 / 詳目顯示

研究生: 張庭熏
Chang, Ting-Hsun
論文名稱: 以電泳法孕核方式成長超奈米晶鑽石薄膜於矽基板與碳化鎢基板之研究
Growth of Ultrananocrystalline Diamond Films on Silicon and Tungsten Carbide Substrates Using Electrophoresis-deposited Nano-diamond Film as Nucleation Layer
指導教授: 戴念華
Tai, Nyan-Hwa
林諭男
Lin, I-Nan
口試委員: 李紫原
張立
陳登銘
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 82
中文關鍵詞: 電泳沉積法超奈米晶鑽石薄膜
外文關鍵詞: Electrophoresis, Ultrananocryatalline diamond
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超奈米晶鑽石(ultrananocrystalline diamond films, UNCD)薄膜因兼具良好的物理化學性質及平坦的表面,在各方面應用皆優於傳統的微米晶鑽石薄膜。本研究先以電泳法沉積奈米鑽石顆粒於矽基板上,再經由微波電漿輔助化學氣相沉積系統(microwave plasma-enhanced chemical vapor deposition, MPECVD)成長UNCD。藉由掃描式電子顯微鏡(scanning electron microscopy, SEM)影像圖觀察鑽石顆粒沉積在矽基板上的分布情形與鑽石膜的表面形貌,以X光繞射分析其結構,並以電子場發射特性與拉曼光譜儀分析薄膜性質,由以上量測得知利用電泳法孕核所成長的UNCD與超音波震盪法孕核所得的UNCD具有相同的品質。此外,本實驗利用電泳法孕核沉積UNCD於矽奈米線陣列與碳化鎢基板,在矽奈米線陣列方面,不破壞矽奈米線的表面形貌,可有效達到孕核效果,於矽奈米線的尖端附著非常緊密且連續的鑽石顆粒,利於電子場發射特性。在碳化鎢基板方面,無論是電泳法孕核或超音波震盪法皆可成功的成長出UNCD。


    In this work, we report the utilization of nano-diamond layer electrophoresis-deposited on Si to perform as a nucleation layer for growing ultra-nanocrystalline diamond (UNCD) film using microwave plasma-enhanced chemical vapor deposition (MPECVD) system. The morphology of the as-deposited diamond nanoparticles and UNCD films are studied by field emission scanning electron microscope (FESEM). Raman and electron field emission (EFE) studies reveal that the obtained UNCD films derived from electrophoresis possess the same performance as a nucleation layer obtained through the ultrasonication method. Moreover, we also demonstrate the growth of UNCD film onto Si nanowires (SiNWs) and tungsten carbide (WC) through the electrophoresis nucleation technique. Electrophoresis nucleation provides a better aligned SiNWs than ultrasonication technique. Enhanced EFE properties are also observed for UNCD nanoemitters on electrophoresis nucleated SiNWs. For the WC substrates, both ultrasonication and electrophoresis nucleations can promote the growth of UNCD films successfully. In addition, UNCD films on electrophoresis nucleated WC substrates also shows better EFE properties.

    摘要 I Abstract II 致謝 III 目錄 VI 表目錄 VII 圖目錄 VIII 第一章 研究動機 1 第二章 文獻回顧 3 2.1鑽石的基本性質與應用 3 2.2鑽石膜的簡介 4 2.2.1人工鑽石的發展演進 4 2.2.2鑽石膜的分類 6 2.3化學氣相沉積鑽石膜 7 2.3.1以氫電漿為主要系統的MCD鑽石沉積 7 2.3.2以氬電漿為主要系統的UNCD鑽石沉積 8 2.4鑽石薄膜的成核機制 11 2.4.1基板前處理對鑽石成核之影響 11 2.4.2 基板選擇對鑽石成核的影響 13 2.4.3 基板與鑽石膜附著力影響因素 14 2.5電泳沉積原理 15 2.5.1膠體粒子之分散性 16 2.5.2影響電泳速度的因素 17 第三章 實驗分析及方法 25 3.1 電泳法沉積鑽石顆粒對超奈米晶鑽石膜成長的影響 25 3.1.1孕核階段-電泳法沉積奈米鑽石顆粒(實驗組) 25 3.1.2孕核階段-超音波震盪法(對照組) 26 3.1.3 沉積超奈米晶鑽石膜 26 3.2不同基板之鑽石膜成長 28 3.3材料特性分析工具 29 第四章 結果與討論 40 4.1 電泳法沉積奈米鑽石顆粒之探討 40 4.2 電泳法沉積奈米鑽石顆粒於矽基板 40 4.2.1 鑽石懸浮液的表面電位與粒徑大小 40 4.2.2 電泳法孕核的表面形貌分析 41 4.3 沉積超奈米晶鑽石膜 42 4.4 電泳法-超奈米晶鑽石薄膜應用於矽奈米線 47 4.5 電泳法-超奈米晶鑽石薄膜應用於非矽基板-碳化鎢基板 51 4.6 電泳法-超奈米晶鑽石薄膜應用於非矽基板-304型不鏽鋼基 板 53 4.7 附著性測試 54 第五章 結論 78 參考文獻 79

    [1] A. M. Affoune, B. L. V. Prasad, H. Sato, and T. Enoki, "Electrophoretic Deposition of Nanosized Diamond Particles," Langmuir, Vol. 17, pp. 547-551, 2000.
    [2] I. Zhitomirsky, "Cathodic electrophoretic deposition of diamond particles," Materials Letters, Vol. 37, pp. 72-78, 1998.
    [3] T. Tsubota, S. Ida, N. Okada, M. Nagata, Y. Matsumoto, and N. Yatsushiro, "CVD diamond coating on WC-Co cutting tool using ECR MPCVD apparatus via electrophoretic seeding pretreatment," Surface and Coatings Technology, Vol. 169-170, pp. 262-265, 2003.
    [4] R. F. Davis, "Diamond films and coatings: development, properties, and applications," New Jersey,Noyes Publications, 1993.
    [5] P. W. May, "CVD diamond: a new technology for the future?," Endeavour, Vol. 19, pp. 101-106, 1995.
    [6] H. Liu and D. S. Dandy, "Diamond chemical vapor deposition: Nucleation and Early Growth Stages," New Jersey,Noyes Publications, 1993.
    [7] B. Dischler and C. Wild, "Low-pressure synthetic diamond: manufacturing and applications," Springer, 1998.
    [8] T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond”, Encyclopedia of Nanoscience and Nanotechnology, California, American Scientific Publications , 2003.
    [9] A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, "Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices," Diamond and Related Materials, Vol. 10, pp. 1952-1961, 2001.
    [10] K. Yamanouchi, N. Sakurai, and T. Satoh, "SAW propagation characteristics and fabrication technology of piezoelectric thin film/diamond structure," in Ultrasonics Symposium, Montréal, Québec, Canada, 1989. Proceedings. Vol.1, pp. 351-354, 1989,
    [11] J. Wang, M. A. Firestone, O. Auciello, and J. A. Carlisle, "Surface Functionalization of Ultrananocrystalline Diamond Films by Electrochemical Reduction of Aryldiazonium Salts," Langmuir, Vol. 20, pp. 11450-11456, 2004.
    [12] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, "High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond," Science, Vol. 297, pp. 1670-1672, 2002 .
    [13] F. J. Himpsel, J. A. Knapp, J. A. VanVechten, and D. E. Eastman, "Quantum photoyield of diamond(111) – A stable negative-affinity emitter," Physical Review B, Vol. 20, pp. 624, 1979.
    [14] W. Zhu, G. P. Kochanski, and S. Jin, "Low-Field Electron Emission from Undoped Nanostructured Diamond," Science, Vol. 282, pp. 1471-1473, November 20, 1998.
    [15] A. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, V. V. Zhirnov, E. I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, and N. Suetin, "Electron field emission for ultrananocrystalline diamond films," Journal of Applied Physics, Vol. 89, pp. 2958-2967, 2001.
    [16] W. P. Kang, J. L. Davidson, Y. M. Wong, and K. Holmes, "Diamond vacuum field emission devices," Diamond and Related Materials, Vol. 13, pp. 975-981, 2004.
    [17] D. M. Gruen, "Nanocrystalline diamond films," Annual Review of Materials Science, Vol. 29, pp. 211-259, 1999.
    [18] E. Erlich and W. D. Hausel, "Diamond deposits: origin, exploration, and history of discovery," Littleton, CO,USA : Society for Mining, Metallurgy, and Exploration, 2002.
    [19] P. W. Bridgman, "Synthetic diamonds," Scientific American, Vol. 193, 1955.
    [20] W. G. Eversole, "Synthesis of diamond," U.S. Patent No. 3,030,188, 1962.
    [21] J. C. Angus, H. A. Will, and W. S. Stanko, "Growth of Diamond Seed Crystals by Vapor Deposition," Journal of Applied Physics, Vol. 39, pp. 2915-2922, 1968.
    [22] B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, "Vapor growth of diamond on diamond and other surfaces," Journal of Crystal Growth, Vol. 52, pp. 219-226, 1981.
    [23] S. Matzumoto, Y. Sato, M. Kamo, and N. Setaka, "Vapor deposition of diamond particles from methane, " Japanese Journal of Applied Physics 2, Vol. 21, pp.183-185 ,1982.
    [24] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, "Diamond synthesis from gas phase in microwave plasma," Journal of Crystal Growth, Vol. 62, pp. 642-644, 1983.
    [25] D. M. Gruen, S. Liu, A. R. Krauss, J. Luo, and X. Pan, "Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions," Applied Physics Letters, Vol. 64, pp. 1502-1504, 1994.
    [26] F. Cleri, et al., "On the electrical activity of sp2-bonded grain boundaries in nanocrystalline diamond," Europhysics Letters, Vol. 46,pp. 671-677, 1999.
    [27] C. J. Rennick, A. G. Smith, J. A. Smith, J. B. Wills, A. J. Orr-Ewing, M. N. R. Ashfold, Y. A. Mankelevich, and N. V. Suetin, "Improved characterisation of C2 and CH radical number density distributions in a DC arc jet used for diamond chemical vapour deposition," Diamond and Related Materials, Vol. 13, pp. 561-568, 2004.
    [28] T. G. McCauley, D. M. Gruen, and A. R. Krauss, "Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma," Applied Physics Letters, Vol. 73, pp. 1646-1648, 1998.
    [29] J. R. Rabeau, P. John, J. I. B. Wilson, and Y. Fan, "The role of C2 in nanocrystalline diamond growth," Journal of Applied Physics, Vol. 96, pp. 6724-6732, 2004.
    [30] N. Dubrovinskaia, L. Dubrovinsky, F. Langenhorst, S. Jacobsen, and C. Liebske, "Nanocrystalline diamond synthesized from C60," Diamond and Related Materials, Vol. 14, pp. 16-22, 2005.
    [31] Ljubisa R.Radovic, "Chemistry and physics of carbon, " New York, Marcel Dekker, 29, 117, 2004.
    [32] S. R. Sails, D. J. Gardiner, M. Bowden, J. Savage, and D. Rodway, "Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm," Diamond and Related Materials, Vol. 5, pp. 589-591, 1996.
    [33] A. C. Ferrari and J. Robertson, "Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond," Physical Review B, Vol. 63, p. 121405, 2001.
    [34] L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, "Tem characterization of nanodiamond thin films," Nanostructured Materials, Vol. 10, pp. 649-660, 1998.
    [35] D. Zhou, D. M. Gruen, L. C. Qin, T. G. McCauley, and A. R. Krauss, "Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas," Journal of Applied Physics, Vol. 84, pp. 1981-1989, 1998.
    [36] D. Zhou, T. G. McCauley, L. C. Qin, A. R. Krauss, and D. M. Gruen, "Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma," Journal of Applied Physics, Vol. 83, pp. 540-543, 1998.
    [37] X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, "Low temperature growth of ultrananocrystalline diamond," Journal of Applied Physics, Vol. 96, pp. 2232-2239, 2004.
    [38] D. M. Gruen, A. R. Krauss, C. D. Zuiker, R. Csencsits, L. J. Terminello, J. A. Carlisle, I. Jimenez, D. G. J. Sutherland, D. K. Shuh, W. Tong, and F. J. Himpsel, "Characterization of nanocrystalline diamond films by core-level photoabsorption," Applied Physics Letters, Vol. 68, pp. 1640-1642, 1996.
    [39] S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, "Microstructure of ultrananocrystalline diamond films grown by microwave Ar-CH4 plasma chemical vapor deposition with or without added H2," Journal of Applied Physics, Vol. 90, pp. 118-122, 2001.
    [40] M. A. Brewer, I. G. Brown, P. J. Evans, and A. Hoffman, "Diamond film growth on Ti-implanted glassy carbon," Applied Physics Letters, Vol. 63, pp. 1631-1633, 1993.
    [41] S. Yugo, T. Kanai, T. Kimura, and T. Muto, "Generation of diamond nuclei by electric field in plasma chemical vapor deposition," Applied Physics Letters, Vol. 58, pp. 1036-1038, 1991.
    [42] M. Ece, B. Oral, J. Patscheider, and K. H. Ernst, "Effect of organic precursors on diamond nucleation on silicon," Diamond and Related Materials, Vol. 4, pp. 720-724, 1995.
    [43] Z. Sun, X. Shi, B. K. Tay, D. Flynn, X. Wang, Z. Zheng, and Y. Sun, "Low pressure polymer precursor process for synthesis of hard glassy carbon and diamond films," Diamond and Related Materials, Vol. 6, pp. 230-234, 1997.
    [44] S. Schelz, C. F. M. Borges, L. Martinu, and M. Moisan, "Diamond nucleation enhancement by hydrofluoric acid etching of silicon substrate," Diamond and Related Materials, Vol. 6, pp. 440-443, 1997.
    [45] M. Belmahi, F. Benedic, J. Bougdira, H. Chatei, M. Remy, and P. Alnot, "Influence of mechanical and chemical silicon surface preparation on diamond nucleation and growth in CH4/H2 system discharge," Surface and Coatings Technology, Vol. 106, pp. 53-59, 1998.
    [46] R. H. Fowler and L. Nordheim, "Electron Emission in Intense Electric Fields," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 119, pp. 173-181, 1928.
    [47] L. W. Nordheim, "The Effect of the Image Force on the Emission and Reflexion of Electrons by Metals," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 121, pp. 626-639, 1928.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE