研究生: |
黃士豪 Shih-hao Huang |
---|---|
論文名稱: |
三維高分子微製程技術於微光學生物感測與微流體反應晶片之應用 Three Dimensional Polymer MEMS for Applications of Microoptic Biosensors and Microfluidic Reactors |
指導教授: |
曾繁根
Fan-gang Tseng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 130 |
中文關鍵詞: | 生物感測器 、微反應器 、高分子微機電製程 |
外文關鍵詞: | SU-8, polymer MEMS, biosensor, microreactor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要發展三維高分子微製程技術,利用UV光微影製程與黑光阻遮罩方式於微光學生物感測器與微流體反應器之應用。其內容包含:(1) 利用單石化製程方式製作具有微稜鏡陣列之內全反射式生物感測器於螢光感測上,(2) 製作平面三維微流體流體聚合裝置於封閉與開放式微流體系統下產生尺寸大小相當一致的單一或是雙重乳化液珠。
(1) 在微光學生物感測器上:吾人提出單石化內全反射式生物感測器,其整合微流道、高分子微光學元件、與平面光波導組合成平行化平台。為了製作微稜鏡陣列,吾人採用甘油浸入式斜向曝光技術在平面光波導上製作具有不同傾斜角之微稜鏡陣列,藉由此一整合式生物晶片,吾人可觀察在平面波導上同時產生多重內全反射螢光點,另外,在此系統下,吾人也可以觀測在消散波激發下微顆粒在靠近表面上之布郎運動情形。此一獨特的製程整合技術簡化的目前內全反射式生物晶片的架構,且可整合到一微小系統中。
(2) 在微流體反應器上:吾人提出平面三維微流體流體聚合裝置。其優點在於可在同一個裝置用來產生油-水或是水-油單一乳化液珠。另外,也可用來產生雙重乳化液珠,亦即液珠內包含多個微小液珠的型態,再者,吾人首次展示在開放式微流體系統下,製作水-油液珠或是藉由光聚合固化形成高分子微顆粒,同時,吾人也可製作具有羧基的高分子微顆粒並修飾接上生物抗體分子,此一獨特的製程整合技術克服了目前二微微流體流體聚合裝置的所面臨的問題,且可整合到一微小系統中。
This thesis develops the three-dimensional (3D) polymer microfabrication techniques with UV lithography and black photoresist shadow method for applications of microoptic biosensors and microfluidic reactors. It mainly consists of (1) a monolithic integration method to fabricate a total-internal- reflection (TIR) based biosensor with microprism arrays for fluorescence sensing, and (2) a planar 3D microfluidic flow-focusing device (MFFD) to produce monodisperse single/double emulsions in a closed/open microfluidic system.
(1) Microoptic biosensors: we propose a monolithic TIR-based biosensor, which integrates a microfluidic chamber, polymer-based optics, and planar waveguides into a high-throughput platform. To fabricate the microprism array, a technology employing glycerol-compensated oblique-exposure is employed. Microprism arrays with various inclined surface angles on the planar optical waveguide have been successfully fabricated. Multiple total internal reflection spots can be observed, through this monolithically integrated optical system simultaneously. Real-time Brownian motions of fluorescent microspheres excited by the evanescent wave under this system are captured for motion analysis. The unique fabrication/integration aspects including on-chip micro-optics simplify current TIR optical configurations and could be integrated into a microsystem.
(2) Microfluidic reactors: we present a planar 3D-MFFD that can produce monodisperse single/double emulsions in a closed/open microfluidic system. The proposed 3D MFFD can produce single emulsions for both water-in-oil (W/O) and oil-in-water (O/W) droplets utilizing the same device. Double emulsions containing one to several internal droplets were successfully produced in the closed channel configuration. In addition, we demonstrated for the first time the feasibility of forming W/O droplets and polymer particles by means of in-situ photopolymerization in an open channel configuration by withdrawing the fluid from the outlet channel. Bioconjugation of the carboxylated copolymer (EGDMA/AA) particles with the anti-rabbit IgG-Cy3 conjugates was also successfully achieved. The unique fabrication of the 3D MFFD device utilizing SU-8 resist overcomes problems for current 2D MFFD and provides flexibility for Lab-on-Chip microsystem.
References
1. J.M. Bustillo, R.T. Howe, R.S. Muller, Surface micromachining for microelectromechanical systerms, Proc. IEEE 86 (8) (1998) 1552–1574.
2. G.T.A. Kovacs, N.I. Maluf, K.E. Petersen, Bulk micromachining of silicon, Proc. IEEE 86 (8) (1998) 1536–1551.
3. H. Guckel, High-aspect-ratio micromachining via deep X-ray lithography, Proc. IEEE 86 (8) (1998) 1586–1593.
4. K. Ikuta, S. Maruo, S. Kojima, New micro stereo lithography for freely movable 3D micro structure, in: Proceedings of the IEEE Micro Electro Mechanical Systems, Heidelberg, Germany, January 1998, pp. 290–295.
5. J.G.E. Gardeniers, J.W. Berenschot, M.J. de Boer, Y. Yeshurun, M. Hefetz, R. van’t Oever, A. van den Berg, Silicon micromachined hollow microneedles for transdermal liquid transfer, in: Proceedings of the IEEE Micro Electro Mechanical Systems, Las Vegas, USA, January 2002, pp. 141–144.
6. O. Tabata, N. Matsuzuka, T. Yamaji, S. Uemura, K. Yamamoto, 3D Fabrication by moving mask deep X-ray lithography (M2DXL) with multiple stages, in: Proceedings of the IEEE Micro Electro Mechanical Systems, Las Vegas, USA, January 2002, pp. 180–183.
7. W. Ehrfeld, A. Schmidt, Recent developments in deep X-ray lithography, J. Vac. Sci. Technol. B 16 (1998) 3526–3534.
8. C. Beuret, G.-A. Racine, J. Gobet, R. Luthier, N.F. de Rooij, Microfabrication of 3D multidirectional inclined structures by UV lithography and electroplating, in: Proceedings of the IEEE Micro Electro Mechanical Systems, Oiso, Japan, January 1994, pp. 81–85.
9. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, SU-8: a low-cost negative resist for MEMS, J. Micromech. Microeng. 7 (1997) 121–124.
10. I. Roch, Ph. Bidaud, D. Collard, L. Buchaillot, Fabrication and characterization of an SU-8 gripper actuated by a shape memory alloy thin film, J. Micromech. Microeng. 13 (2003) 330–336.
11. N. Chronis, L.P. Lee, Polymer-based actuators integrated into microfluidic systems, in: Proceedings of the Micro Total Analysis Systems 2002, Nara, Japan, November 2002, pp. 754–756.
12. B.L. Gray, V.P. Iordanov, P.M. Sarro, A. Bossche, SU-8 structures for integrated high-speed screening, in: Proceedings of the Micro Total Analysis Systems 2002, Nara, Japan, November 2002, pp. 464–466.
13. R.J. Jackman, T.M. Floyd, R. Ghodssi, M.A. Schmidt, K.F. Jensen, Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy, J. Micromech. Microeng. 11 (2001) 263–269.
14. F.G. Tseng, Y.J. Chuang, W.K. Lin, A novel fabrication method of embedded micro channels employing simple UV dosage control and antireflection coating, in: Proceedings of the IEEE Micro Electro Mechanical Systems, Las Vegas, USA, January 2002, pp. 69–72.
15. Y. Choi, K. Kim, M.G. Allen, Continuously-varying, threedimensional SU-8 structures: fabrication of inclined magnetic actuators, in: Proceedings of the IEEE Micro Electro Mechanical Systems,Las Vegas, USA, January 2002, pp. 176–179.
16. Choi Y, Kim K and Allen M G 2002 Continuously-varying, three-dimensional SU-8 structures: fabrication of inclined magnetic actuators 2002 Proceedings of the IEEE Micro Electro Mechanical Systems pp 176–179
17. Han M, Lee W, Lee S K and Lee S S 2004 3D microfabrication with inclined/rotated UV lithography Sensors and Actuators A 111 pp 14–20
18. Hung K Y, Hu H T and Tseng F G 2004 Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head J. Micromech. Microeng. 14 pp 975–983
19. Hung K Y, Hu H T and Tseng F G 2003 A novel fabrication technology for smooth 3D inclined polymer microstructures with adjustable angles The 12th Int. Conf. on Solid-State Sensors, Actuators and Microsystems pp 821–824
20. Hung H and Fu C A Novel and Simple Fabrication Method of Embedded SU-8 Micro. Channelsby Direct UV Lithograph The first International Symposium on Micro&Nano Technology (ISMNT-2), 2005
21. Tuomikoski S and Sikanen T 2005 Free-standing SU-8 microfluidic chips by adhesive bonding and release etching Sensors and Actuators A 120 408-15
22. Patrick Abgrall, Christine Lattes, V´eronique Con´ed´era, Xavier Dollat, St´ephane Colin and Anne Marie Gu´e A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films J. Micromech. Microeng. 16 (2006) 113–121
23. Jung C C, Saaski E W, McCrae D A, Lingerfelt B M and Anderson G P 2003 RAPTOR: a fluoroimmunoassay-based fiber optic sensor for detection of biological threats IEEE Sens. J. 3 pp 352–360
24. Rowe C A, Bolitho J S, Bundesen P G, Rylatt D B, Eisenberg P R, Scruggs S B, Feldstein M J, Golden J P and Ligler F S 1999 An array immunosensor for simultaneous detection of clinical analytes Anal. Chem. 71 pp 433–439
25. Rowe C A, Hazzard J W, Hoffman K E, Cras J J, Golden J P and Ligler F S 2000 Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor Biosens. Bioelectron. 15 pp 579–589
26. Feldstein M J, Golden J P, Rowe C A, MacCraith B D and Ligler F S 1999 Array biosensor: optical and fluidics systems J. Biomed. Microdevices 1 pp 139–153
27. Lehr H P, Brandenburg A and Sulz G 2003 Modeling and experimental verification of the performance of TIRF-sensing systems for oligonucleotide microarrays based on bulk and integrated optical planar waveguides Sensors and Actuators (B) 92 pp 303–314
28. Lehr H P, Reimann M, Brandenburg A, Sulz G and Klapproth H 2003 Real-Time Detection of Nucleic Acid Interactions by Total Internal Reflection Fluorescence Anal. Chem. 75 pp 2414-2420
29. Taitt C R, Anderson G P and Ligler F S 2005 Evanescent wave fluorescence biosensors Biosens. Bioelectron. 20 pp 2470-2487
30. Chronis N and Lee L P 2004 Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall Lab on a Chip 4 pp 125-130.
31. Sadr R, Yoda M, Zheng Z and Conlisk A T 2004 An experimental study of electro-osmotic flow in rectangular microchannels J. Fluid Mech. 506 pp 357–367
32. Gai H, Li Y, Li Z S, Ma Y and Lin B 2005 Simultaneous measurements of the flow velocities in a microchannel by wide/evanescent field illuminations with particle/single molecules Lab on a Chip 5 pp 443–449
33. Xu, S.; Nie, Z.; Seo, M.; Lewis, P.C.; Kumacheva, E.; Garstecki, P.; Weibel, D.; Gitlin, I.; Whitesides, G.M.; Stone, H.A. Generation of Monodisperse Particles Using Microfluidics: Control over Size, Shape and Composition/ Angew. Chemie Intnl. Ed. 44, 724-728 (2005)
34. Nie, Z.; Xu, S.; Seo, M.; Lewis, P.C.; Kumacheva, E. Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactor/ J. Amer. Chem. Soc. 127, 8058-8063 (2005)
35. Nie, Z.; Li, W.; Seo, M.; Xu, S.; Kumacheva, E. Janus and Ternary Particles Generated by Microfluidic Synthesis: Design, Synthesis and Self-Assembly / J. Amer. Chem. Soc. ASAP
36. Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A and Weitz D A 2005 Monodisperse double emulsions generated from a microcapillary device Science 308 537-41
37. Jeong W J, Kim J Y, Choo J, Lee E K, Han C S, Beebe D J, Seong G H and Lee S H 2005 Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems Langmuir 21 3738-41
38. Oh H J, Kim S H, Baek J Y, Seong G H and Lee S H 2006 Hydrodynamic micro-encapsulation of aqueous fluids and cells via ‘on the fly’ photopolymerization J. Micromech. Microeng. 16 285-91
39. Kronick M N and Little W A 1975 New immunoassay based on fluorescence excitation by internal-reflection spectroscopy J. Immunol. Meth. 8 pp 235–240
40. Jung C C, Saaski E W, McCrae D A, Lingerfelt B M and Anderson G P 2003 RAPTOR: a fluoroimmunoassay-based fiber optic sensor for detection of biological threats IEEE Sens. J. 3 pp 352–360
41. Ligler F S, Breimer M, , Golden J P, Nivens D A, Dodson J P, Green T M, Haders D P and Sadik O A 2002 Integrating waveguide biosensor Anal. Chem. 73 pp 713–719.
42. Liu X and Tan W 1999 A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons Anal. Chem. 71 pp 5054–5059
43. Rogers K R, Apostol A, Madsen S J and Spencer C W 2001 Fiber optic biosensor for detection of DNA damage Anal. Chim. Acta 444 pp 51–60
44. Ligler F S, Taitt C R, Shriver-Lake L C, Sapsford K E, Shubin Y and Golden J P 2003 Array biosensor for detection of toxins Anal. Bioanal. Chem. 377 pp 469–477
45. Rowe C A, Bolitho J S, Bundesen P G, Rylatt D B, Eisenberg P R, Scruggs S B, Feldstein M J, Golden J P and Ligler F S 1999 An array immunosensor for simultaneous detection of clinical analytes Anal. Chem. 71 pp 433–439
46. Rowe C A, Hazzard J W, Hoffman K E, Cras J J, Golden J P and Ligler F S 2000 Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor Biosens. Bioelectron. 15 pp 579–589
47. Feldstein M J, Golden J P, Rowe C A, MacCraith B D and Ligler F S 1999 Array biosensor: optical and fluidics systems J. Biomed. Microdevices 1 pp 139–153
48. Tschmelak J, Proll G and Gauglitz G 2004 Verification of performance with the automated direct optical TIRF immunosensor (River Analyser) in single and multi-analyte assays with real water samples Biosens. Bioelectron. 20 pp 743–752
49. Lehr H P, Brandenburg A and Sulz G 2003 Modeling and experimental verification of the performance of TIRF-sensing systems for oligonucleotide microarrays based on bulk and integrated optical planar waveguides Sensors and Actuators (B) 92 pp 303–314
50. Lehr H P, Reimann M, Brandenburg A, Sulz G and Klapproth H 2003 Real-Time Detection of Nucleic Acid Interactions by Total Internal Reflection Fluorescence Anal. Chem. 75 pp 2414-2420
51. Taitt C R, Anderson G P and Ligler F S 2005 Evanescent wave fluorescence biosensors Biosens. Bioelectron. 20 pp 2470-2487
52. Gimkiewicz C, Hagedorn D, Jahns J, Kley E B and Thoma F 1999 Fabrication of microprisms for planar optical interconnections by use of analog gray-scale lithography with high-energy-beam–sensitive glass Applied Optics 38 pp2986-2990
53. Ehrfeld W and Schmidt A 1998 Recent developments in deep X-ray lithography, J. Vac. Sci. Technol. B 16 pp 3526–3534
54. Han M, Lee W, Lee S K and Lee S S 2004 3D microfabrication with inclined/rotated UV lithography Sensors and Actuators A 111 pp 14–20
55. Choi Y, Kim K and Allen M G 2002 Continuously-varying, three-dimensional SU-8 structures: fabrication of inclined magnetic actuators 2002 Proceedings of the IEEE Micro Electro Mechanical Systems pp 176–179
56. Chronis N and Lee L P 2004 Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall Lab on a Chip 4 pp 125-130.
57. Chang-Yen D A and Gale B K 2003 An integrated optical oxygen sensor fabricated using rapid-prototyping techniques Lab on a Chip 3 pp 297–301
58. Prieve D C and Frej N A 1990 Total internal reflection microscopy: a quantitative tool for the measurements of colloidal forces Langmuir 6 pp 396–403.
59. Ejsing L, Hansen M, Menon A, Ferreira H, Graham D and Freitas P 2004 Planar Hall effect sensor for magnetic micro- and nanobead detection Appl. Phys. Lett. 84 pp 4729.-4731
60. Marie R, Schmid S, Johansson A, Ejsing L, Nordstroma M D, Hafliger, Christensen C B, Boisen A and Dufva M 2005 Immobilisation of DNA to polymerised SU-8 photoresist Biosens. Bioelectron. (in press)
61. Hung K Y, Hu H T and Tseng F G 2004 Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head J. Micromech. Microeng. 14 pp 975–983
62. Hung K Y, Hu H T and Tseng F G 2003 A novel fabrication technology for smooth 3D inclined polymer microstructures with adjustable angles The 12th Int. Conf. on Solid-State Sensors, Actuators and Microsystems pp 821–824
63. Sadr R, Yoda M, Zheng Z and Conlisk A T 2004 An experimental study of electro-osmotic flow in rectangular microchannels J. Fluid Mech. 506 pp 357–367
64. Gai H, Li Y, Li Z S, Ma Y and Lin B 2005 Simultaneous measurements of the flow velocities in a microchannel by wide/evanescent field illuminations with particle/single molecules Lab on a Chip 5 pp 443–449
65. Choi Y, Kim K and Allen M. G. 2002 Continuously-varying, three-dimensional su-8 structures: fabrication of inclined magnetic actuators Proceedings of the IEEE Micro Electro Mechanical Systems pp. 176–179
66. Jennissen H P and Zumbrink T 2004 A novel nanolayer biosensor principle Biosensors and Bioelectronics 19 pp. 987–997
67. Nisisako T, Torii T and Higuchi T 2002 Droplet formation in a microchannel network Lab Chip. 2(1) 24-6
68. Okushima S, Nisisako T, Torii T and Higuchi T 2004 Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices Langmuir 20 9905-08
69. Dendukuri D, Tsoi K, Hatton T A and Doyle P S 2005 Controlled synthesis of nonspherical microparticles using microfluidics Langmuir 21 2113-06.
70. Thorsen T, Roberts R W, Arnold F H and Quake S R 2001 Dynamic pattern formation in a vesicle-generating microfluidic device Phys. Rev. Lett. 86 4163–66
71. Anna S L, Bontoux N and Stone H A 2003 Formation of dispersions using "flow focusing" in microchannels Appl. Phys. Lett. 82 364-66
72. Garstecki P, Gitlin I, DiLuzio W and Whiteside G M 2004 Formation of monodisperse bubbles in a microfluidic flow-focusing device Appl. Phys. Lett. 85 2649-51
73. Seo M, Nie Z, Xu S, Lewis P C and Kumacheva E 2005 Microfluidics: from dynamic lattices to periodic arrays of polymer disks Langmuir 21 4773-75
74. Seo M, Nie Z, Xu S, Mok M, Lewis P C, Graham R and Kumacheva E 2005 Continuous microfluidic reactors for polymer particles Langmuir 21 11614-22
75. Dusseault J, Leblond F A, Robitaille R, Jourdan G, Tessier J, Menard M, Henley N and Halle J P 2005 Microencapsulation of living cells in semi-permeable membranes with covalently cross-linked layers Biomaterials 26 1515-22
76. Benichou A, Aserin A and Garti N 2002 Double emulsions stabilized by new molecular recognition hybrids of natural polymers Polym. Adv. Technol. 13 1019-31
77. Peyratout C S and Dähne L 2004 Tailor-Made Polyelectrolyte Microcapsules: From Multilayers to Smart Containers Angew. Chem. Int. Ed. 43 3762-83.
78. Benita S 1996 Microencapsulation: Methods and Indusrial Application, Marcel Dekker, New York
79. Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A and Weitz D A 2005 Monodisperse double emulsions generated from a microcapillary device Science 308 537-41
80. Takeuchi S, Garstecki P, Weibel D B and Whitesides G M 2005 An axisymmetric flow-focusing microfluidic device Advanced Materials 17 1067-72
81. Jeong W J, Kim J Y, Choo J, Lee E K, Han C S, Beebe D J, Seong G H and Lee S H 2005 Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems Langmuir 21 3738-41
82. Oh H J, Kim S H, Baek J Y, Seong G H and Lee S H 2006 Hydrodynamic micro-encapsulation of aqueous fluids and cells via ‘on the fly’ photopolymerization J. Micromech. Microeng. 16 285-91
83. Lin S P and Reitz R D 1998 Drop and spray formation from a liquid jet Annu. Rev. Fluid Mech. 30 85-105
84. Tuomikoski S and Sikanen T 2005 Free-standing SU-8 microfluidic chips by adhesive bonding and release etching Sensors and Actuators A 120 408-15
85. Sikanen T, Tuomikoski S, Ketola R A, Kostiainen R, Franssila S and Kotiaho T 2005 Characterization of SU-8 for electrokinetic microfluidic applications Lab Chip. 5(8) 888-96.
86. Sundararajan N, Pio M S, Lee L P and Berlin A A 2004 Three-Dimensional Hydrodynamic Focusing in Polydimethylsiloxane Micro-Channels for Molecular Detection Journal of Microelectromechanical Systems 13 (4) 559 -567
87. Huang S H and Tseng F G 2005 Development of a monolithic total internal reflection-based biochip utilizing a microprism array for fluorescence sensing J. Micromech. Microeng. 15(12) 2235-42
88. Chuang Y J, Tseng F G, Cheng J H and Lin W K 2003 A novel fabrication method of embedded microchannels by using SU-8 thick-film photoresists Sens. Actuators A 103 64-69
89.http://fujifilm.jp/business/material/display/photoresist/index.html
90. Nie Z, Xu S, Seo M, Lewis P C and Kumacheva E 2005 Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactor J. Amer. Chem. Soc. 127 8058-63
91. Hosokawa K, Fujii T and Endo I 1999 Droplet-based nano/picoliter mixer using hydrophobic microcapillary vent Proc. IEEE MEMS Workshop 388-93.
92. Garstecki P, Fuerstman M J, Fischbach M A, Sia S K and Whitesides G M 2006 Mixing with bubbles: a practical technology for use with portable microfluidic devices Lab Chip 6(2) 207-16
93. Levent Yobas, Stefan Martens, Wee-Liat Ong, and Nagarajan Ranganathan 2006 High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets Lab on a Chip 6(8) 1073-1079