簡易檢索 / 詳目顯示

研究生: 嚴國維
Mickey Yen
論文名稱: 高加減速PCB鑽孔機進給系統設計與結構動態分析
指導教授: 雷衛台
Wei-Tai Lei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 73
中文關鍵詞: 進給系統結構動態科氏力PCB鑽孔機
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    對高速高精度工具機或PCB板鑽孔機而言,進給系統加速度提升,意味著驅使平台加速的螺桿軸向力變大,其反作用力透過止推軸承對機器結構造成的振動量也隨之增加。因此為了提升加工精度,除了對進給系統動態加以分析,尚須考慮各結構間的相對振動行為,確認需加強的元件部位並建立設計規範。
    本論文首先探討鑽孔機高速定位時,平台動態特性受控制器濾波參數之影響及路徑規劃加速度設定與所選用的馬達之關係。其次,由於鑽孔機主軸轉速不斷提高,本論文也探討高速轉子在平台振動(轉動座標系)下的影響。最後,高加減速鑽孔機形狀設計除了考量尺寸搭配與靜力變形外,機台重心位置也是影響平台定位精度之重要參數。
    本論文建立了高速鑽孔機進給系統的動態模型,以及高速鑽孔機的結構模型,並以Matlab與BCB兩套軟體為發展平台設計電腦輔助分析軟體,協助系統設計者分析鑽孔機在實際工作狀態下的行為,使設計者在設計時能準確地掌握各元件的動態行為,減少新機的測試修改時間。


    目錄 摘要 I 目錄 II 圖目錄 IV 表目錄 VII 1 簡介 1 2 文獻回顧 2 2.1 進給驅動模型 2 2.1.1 雙質量系統 2 2.1.2 多質量系統 3 2.2 馬達及控制系統 7 2.3 研究目的 9 3 單軸進給系統模型分析與模擬 10 3.1 控制器模型 10 3.2 電氣模型 15 3.3 機械模型 18 3.3.1 動態方程式 20 3.3.2 狀態空間表示法 23 3.4 系統參數值 24 3.4.1 導螺桿剛性 [4][20] 24 3.4.2 螺帽剛性 [20] 25 3.4.3 軸承剛性 [20] 25 3.4.4 螺栓剛性 [21] 26 3.4.5 摩擦力模型 [16] 27 3.5 單軸進給系統方塊圖 28 3.6 實機量測與模擬比對 30 3.6.1 馬達驅動器結合機械端驗證 30 3.6.2 完整單軸進給系統驗證 31 4 平台系統動態分析與模擬 33 4.1 鑽孔機高速主軸對平台結構影響 33 4.1.1 陀螺儀效應與高速主軸的關係 33 4.1.2 動態建模與方程式推導 36 4.1.3 參數設定 40 4.1.4 實機量測比對 46 4.2 機台重心最佳位置設計 48 4.2.1 驅動與振動之耦合模型 48 4.2.2 動態方程式 51 4.2.3 驅動與振動之耦合系統方塊圖 53 4.2.4 系統模擬 56 4.2.5 改善方法 60 5 電腦輔助進給驅動分析系統實現 62 5.1 系統架構 62 5.2 系統說明 62 5.3 操作介面 63 5.3.1 單軸進給操作介面 63 5.3.2 驅動與振動耦合操作介面 68 5.4 設計範例 69 6 結論 71 參考文獻 72

    參考文獻
    [1] M. S. Kim, S. C. Chung, A systematic approach to design high-performance feed drive systems, International Journal of Machine Tools and Manufacture 45 (2005).
    [2] 宋漢釧, CNC工具機高速進給軌跡精度改進研究, 碩士論文, 國立清華大學動力機械工程研究所, 1998.
    [3] 張香鈜, 扭力驅動模式下的運動控制研究, 碩士論文, 國立清華大學動力機械工程研究所
    [4] 吳嘉晉, 進給驅動系統的動態模擬與分析, 碩士論文, 國立清華大學動力機械工程研究所, 2003.
    [5] M. Ebrahimi, R. Whalley, Analysis, modeling and simulation of stiffness in machine tool drives, Computers and Industrial Engineering 38 (2000).
    [6] G. Younkin, Modeling machine tool feed servo drives using simulation techniques to predict performance, IEEE Transactions on Industry Applications 27 (2) (1991).
    [7] H. Gross, Electrical feed drives for machine tools, John Wiley & Sons Ltd., New York, 1983.
    [8] M. Weck, Handbook of machine tools Volume 3, John Wiley & Sons Ltd., New York, 1984.
    [9] G. Reinhart, M. Weissenberger, Multibody simulation of machine tools as mechatronic systems for optimization of motion dynamics in the design process, Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, 1999.
    [10] K. Erkorkmaz, Y. Altintas, High speed CNC system design. Part II: modeling and identification of feed drives, International Journal of Machine Tools and Manufacture 41 (10) (2001).
    [11] G. Pritschow, W. Philipp, Research on the efficiency of feedforward controllers in M direct drives, Annals of the CIRP 41 (1) (1992).
    [12] G. Pritschow, A comparison of linear and conventional electromechanical drives , Annals of the CIRP 47 (2) (1998).
    [13] 陳慶盈, 工具機進給系統動態分析與測試, 碩士論文, 大葉大學機械工程研究所, 2000.
    [14] 陳哲楷,“高加減速PCB鑽孔機進給系統的設計與分析”, 碩士論文, 國立清華大學動力機械工程研究所, 2006。
    [15] Ph. Poignet, M. Gautier, W. Khalil, Modeling, control and simulation of high speed machine tool axes, Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, 1999.
    [16] B. Armstrong-Helouvry, P. Dupont, C. Canudas de Wit, A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica 30 (7) (1994).
    [17] 周昕, 摩擦力干擾下精密定位系統的控制策略, 碩士論文, 國立清華大學動力機械研究所, 1997.
    [18] C. Canudas de Wit, H. Olsson, K.J. Astrom, P. Lischinsky, A new model for control of systems with friction, IEEE Transactions on Automatic Control 40 (3) (1995).
    [19] P. Doupont, Avoiding stick-slip in position and force control through feedback, Proceedings of 1991 IEEE International Conference on Robotics and Automation, Sancramento, California, 1991, Vol. 2.
    [20] 工研院機械所, 工具機設計實務與軟體應用, 非常取向股份有限公司, 1994.
    [21] A.H. Slocum, Precision machine design, Prentice Hall, New Jersey, 1992.
    [22] S. Bolognani, A. Venturato, M. Zigliotto, Theoretical and experimental comparison of speed controllers for elastic two-mass-systems, Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual 3 (2000).
    [23] O. Zirn, A. Monat, T. Schöller, Control of direct driven feed axes with flexible structural components, Industry Applications Conference, 2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005 4 (2005) 2449-2455.
    [24] O. Zirn, S. Weikert, F. Rehsteiner, Design and optimization of fast axis feed drives using nonlinear stability analysis, Annals of the CIRP 45 (1) (1996).
    [25] G. Brandenburg, U. Schafer, Influence and adaptive compensation of simultaneously acting backlash and coulomb friction in elastic two-mass systems of robots and machine tools, Proceedings of ICCON `89 IEEE International Conference on Control and Applications, 1989.
    [26] C.C. Cheng, J.S. Shiu, Transient vibration analysis of a high-speed feed drive system, Journal of Sound and Vibration 239 (3) (2001).
    [27] 許佳賢, 工具機進給系統的動態分析, 碩士論文, 國立中正大學機械工程研究所, 1999.
    [28] M. Tsutsumi , S. Ohtomo , K.Yamazaki, S. Ge , Mathematical model of feed drive mechanical system and friction for CNC machine tools. Journal of Japan Society for Precision Engineering 61 (10)(1995).
    [29] 文笙書局”AC伺服系統的理論與設計實務”, 劉昌煥 校定 , 許溢恬 譯

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE