研究生: |
黃建綸 Huang, Jian-Lun |
---|---|
論文名稱: |
PN型氧化鋅奈米結構之研究 Investigation of p-n type zinc oxide nanostructures |
指導教授: |
吳振名
Wu, Jenn-Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 氧化鋅 、p-type 、奈米柱 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在二十世紀初期,人們已經開始研究氧化鋅,包括它的光學性質、電學性質、結晶性質。近年來氧化鋅的奈米結構蓬勃發展,在光電的應用上受到矚目。但是想要有更好的光電應用,必須先製作出低阻抗的p型氧化鋅,這是目前的一大難題,仍待克服。
本論文主要研究氧化鋅奈米柱與p型氧化鋅,使用氧化鋅種子層與摻雜鋁的氧化鋅種子層來成長奈米柱,並由一些簡單的參數變化與種子層的改善,觀察奈米柱的成長情形,嘗試製作出分散性好、垂直性佳的奈米柱。使用氧化鋅種子層的溶液濃度為1 mM,搭配水熱法濃度為6.67 mM,成長出的奈米柱密度為2×109(個數/㎝2),且垂直性佳;摻雜鋁氧化鋅種子層上覆蓋厚度為82nm的氧化鋅薄膜並成長奈米柱,順利在柱體間被填充入材料,表示分散性好,且垂直性佳。p型氧化鋅,由於奈米結構量測上的困難,嘗試製作p型薄膜,以pn接面來進行整流量測,以得出整流效果來證明p型摻雜的成功。氮摻雜薄膜電阻率約為1000 Ω×㎝,且得到整流特性,成功做出p型氧化鋅薄膜;氮鋁共摻雜薄膜在鋁1%左右的摻雜量之下,電阻率更下降為200 Ω×㎝,且得到整流特性,亦為p型薄膜。
1. Wang, W.W., et al., Field emission properties of zinc oxide nanowires fabricated by thermal evaporation. Physica E-Low-Dimensional Systems & Nanostructures, 2007. 36(1): p. 86-91.
2. Zhang, Y.S., et al., Patterned growth and field emission of ZnO nanowires. Materials Letters, 2006. 60(4): p. 522-526.
3. Xu, J.Q., et al., Gas sensing properties of ZnO nanorods prepared by hydrothermal method. Journal of Materials Science, 2005. 40(11): p. 2919-2921.
4. Wei, Z.P., et al., Room temperature p-n ZnO blue-violet light-emitting diodes. Applied Physics Letters, 2007. 90,042113
5. Konenkamp, R., R.C. Word, and C. Schlegel, Vertical nanowire light-emitting diode. Applied Physics Letters, 2004. 85(24): p. 6004-6006.
6. Park, S.H., S.H. Kim, and S.W. Han, Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications. Nanotechnology, 2007. 18(5): 055608
7. Wang, X.D., et al., Direct-current nanogenerator driven by ultrasonic waves. Science, 2007. 316(5821): p. 102-105.
8. Olson, D.C., et al. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. 2006: Elsevier Science Sa.496,p. 26-29
9. Lu, C.Y., et al., Ultraviolet photodetectors with ZnO nanowires prepared on ZnO : Ga/glass templates. Applied Physics Letters, 2006. 89(15): 153101
10. Padmavathy, N. and R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Science and Technology of Advanced Materials, 2008. 9(3): 035004
11. Van de Walle, C.G., et al., First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe. Physical Review B, 1993. 47(15): p. 9425.
12. von Wenckstern, H., et al., Deep acceptor states in ZnO single crystals. Applied Physics Letters, 2006. 89(9): 092122
13. Karamdel, J., C.F. Dee, and B.Y. Majlis, Characterization and aging effect study of nitrogen-doped ZnO nanofilm. Applied Surface Science.2010, 256(21): p. 6164-6167.
14. Jang, J.H., et al., Study of microstructural evolutions in phosphorus-doped ZnO films grown by pulsed laser deposition. Journal of Crystal Growth, 2009. 311(11): p. 3143-3146.
15. Vaithianathan, V., B.T. Lee, and S.S. Kim, Preparation of As-doped p-type ZnO films using a Zn3As2/ZnO target with pulsed laser deposition. Applied Physics Letters, 2005. 86(6): 062101
16. Kim, D.H., et al., Structural and electrical properties of Sb-doped p-type ZnO thin films fabricated by RF magnetron sputtering. Journal of Electroceramics, 2009. 22(1-3): p. 82-86.
17. Srinivasan, G., R.T.R. Kumar, and J. Kumar, Li doped and undoped ZnO nanocrystalline thin films: a comparative study of structural and optical properties. Journal of Sol-Gel Science and Technology, 2007. 43(2): p. 171-177.
18. Lin, S.S., et al., p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes. Solid State Communications, 2008. 148(1-2): p. 25-28.
19. Kim, J.B., et al., Cu-doped ZnO-based p-n hetero-junction light emitting diode. Semiconductor Science and Technology, 2008. 23(9): 095004
20. Park, C.H., S.B. Zhang, and S.-H. Wei, Origin of p-type doping difficulty in ZnO: The impurity perspective. Physical Review B, 2002. 66(7): p. 073202.
21. Dai, L.P., et al., The recent advances of research on p-type ZnO thin film. Journal of Materials Science-Materials in Electronics, 2008. 19(8-9): p. 727-734.
22. Chen, L.L., et al., Control and improvement of p-type conductivity in indium and nitrogen codoped ZnO thin films. Applied Physics Letters, 2006. 89(25): 252113
23. Kumar, M., et al., Growth of epitaxial p-type ZnO thin films by codoping of Ga and N. Applied Physics Letters, 2006. 89(11): 112103.
24. Baruah, S. and J. Dutta, Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 2009. 10(1): 013001
25. Ozgur, U., et al., A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005. 98(4): 041301
26. McCluskey, M.D. and S.J. Jokela, Defects in ZnO. Journal of Applied Physics, 2009. 106(7): 071101
27. Janotti, A. and C.G. Van de Walle, Native point defects in ZnO. Physical Review B, 2007. 76(16): 165202
28. Choi, Y.S., et al., Recent Advances in ZnO-Based Light-Emitting Diodes. Ieee Transactions on Electron Devices, 2010. 57(1): p. 26-41.
29. Rozati, S.M., et al., Electrical, structural and optical properties of fluorine-doped zinc oxide thin films: Effect of the solution aging time. Thin Solid Films, 2009. 518(4): p. 1279-1282.
30. Chikoidze, E., et al., Electrical properties of chlorine-doped ZnO thin films grown by MOCVD. Physica Status Solidi a-Applications and Materials Science, 2008. 205(7): p. 1575-1579.
31. Meyer, B.K., et al., Bound exciton and donor-acceptor pair recombinations in ZnO. Physica Status Solidi B-Basic Research, 2004. 241(2): p. 231-260.
32. Yamamoto, T. and H. Katayama-Yoshida, Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Japanese Journal of Applied Physics Part 2-Letters, 1999. 38(2B): p. L166-L169.
33. Yamamoto, T. and H. Katayama-Yoshida, Unipolarity of ZnO with a wide-band gap and its solution using codoping method. Journal of Crystal Growth, 2000. 214-215: p. 552-555.
34. Dutta, M., T. Ghosh, and D. Basak, N Doping and Al-N Co-doping in Sol-Gel ZnO Films: Studies of Their Structural, Electrical, Optical, and Photoconductive Properties. Journal of Electronic Materials, 2009. 38(11): p. 2335-2342.
35. Poghosyan, A.R., et al. Sol-gel method of p-type zinc oxide films preparation. in Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications. 2007. San Diego, CA, USA: SPIE.6698,66981D1-4
36. Bierwagen, O., et al., Causes of incorrect carrier-type identification in van der Pauw--Hall measurements. Applied Physics Letters, 2008. 93(24): p. 242108-3.
37. Wang, Z.L., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics-Condensed Matter, 2004. 16(25): p. R829-R858.
38. Willander, M., et al., Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology, 2009. 20(33): 332001
39. Bekeny, C., et al., Optical properties of ZnO nanorods realised by aqueous chemical growth. Superlattices and Microstructures, 2007. 42(1-6): p. 398-402.
40. Sugunan, A., et al., Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology, 2006. 39(1): p. 49-56.
41. Lin, J.P. and J.M. Wu, The effect of annealing processes on electronic properties of sol-gel derived Al-doped ZnO films. Applied Physics Letters, 2008. 92(13): 134103
42. Chen, J.T., et al., The effect of Al doping on the morphology and optical property of ZnO nanostructures prepared by hydrothermal process. Applied Surface Science, 2009. 255(7): p. 3959-3964.
43. Huang, J.S. and C.F. Lin, Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing. Journal of Applied Physics, 2008. 103(1): 014304
44. Ji, L.W., et al., Effect of seed layer on the growth of well-aligned ZnO nanowires. Journal of Physics and Chemistry of Solids, 2009. 70(10): p. 1359-1362.
45. Kim, S.J., et al., Novel fabrication of various size ZnO nanorods using hydrothermal method. Microelectronic Engineering, 2010. 87(5-8): p. 1534-1536.
46. Lu, J.G., et al., Junction properties of nitrogen-doped ZnO thin films, in Physica Status Solidi C - Current Topics in Solid State Physics, Vol 5, No 9, Y. Hirayama and T. Sogawa, Editors. 2008, Wiley-V C H Verlag Gmbh: Weinheim. p. 3088-3090.
47. Hu, G.X., et al., ZnO homojunctions grown by cosputtering ZnO and Zn3P2 targets. Applied Physics Letters, 2006. 89(2): 021112
48. Ip, K., et al., Contacts to ZnO. Journal of Crystal Growth, 2006. 287(1): p. 149-156.