簡易檢索 / 詳目顯示

研究生: 白松穎
論文名稱: 熱逆境後小球藻粒腺體活性的衰退/抗菌多胜肽對生長中大腸桿菌的影響
The decay of mitochondrial activity of chlorella after heat stress / Effect of antimicrobial peptides on the growth of Escherichia coli
指導教授: 徐邦達
Ban-Dar Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 78
中文關鍵詞: 小球藻熱逆境MTT 實驗共軛焦顯微鏡粒線體抗菌多胜肽生長曲線
外文關鍵詞: chlorella, heat stress, MTT assay, confocal microscopy, mitochondria, antimicrobial peptides, growth curve
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當細胞面對極端的環境時,其生理與型態上都會發生改變。從之前的研究中發現,小球藻在經過46.5℃一小時熱逆境後,分別在光照或黑暗中繼續培養,其細胞核內的DNA會聚集,並且在光照培養下可觀察到葉綠素的降解和部份DNA的分解,所以懷疑熱逆境處理後的小球藻可能會走向程序性的細胞死亡。為了更進一步了解細胞內的變化狀況,本實驗首先觀察加熱46.5℃時細胞核內DNA的早期變化(一個小時內),並且利用細胞活性測試,觀察整體或個別細胞的粒線體琥珀酸脫氫酶的酵素活性;令人驚訝的,在加熱後暗處理的細胞中,其細胞活性逐漸降低,似乎逐漸步入死亡,而加熱後光照處理的細胞,則有部份逃過死亡,不但恢復了酵素活性,細胞重新開始分裂,也重新的產生葉綠素螢光,其中的修補機制值得未來更深入的探討。
    由於病原菌抗藥性日漸嚴重,近年來開始著重於有關於抗菌蛋白(antimicrobial peptides)(AMPs)的研究,且有許多的AMPs已經在動物、植物或是昆蟲上發現。本實驗由非洲爪蛙蟾蜍(African clawed frog Xenopus laevis)表皮所分泌的抗菌蛋白:magainin 2(MG2)為基礎,改變其親水性胺基酸的分布或是螺旋的數目,並藉由大腸桿菌的生長曲線觀察所造成的影響,結果發現表現MG2本身對大腸桿菌的生長並沒有太大的影響,反而是較短但具有MG2胺基端的MG3對菌的生長有抑制的作用,其中的原理仍需要更深入的探討。


    When cell exposed to extreme environment, both their physiology and morphology change accordingly. In previous studies, we found that Chlorella pyrenoidosa exposed to heat stress (46.5℃) for one hour and cultured again under light or dark environment., their nuclear DNA would be condensed. If recultured under light, both chlorophylls and DNA would degrade. We thus speculated that heat stress plus readtirition might lead chlorella to go through a process of programmed cell death.
    In order to understand more about this process, we tried to detect the early DNA changes after heat stress by confocal microscopy and measured mitochondrial cell activity by 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) cell viability assay. Surprisingly, If re-culture was done in the dark, cells’ activity would reduce. Continuously, leading cells to death. On the other hand, under continuous illumination some cell would escape from death, and repaired normal chlorophyll fluorescence and cell activity. This repair system certainly is worthy to study further.
    Because antibiotic resistances of pathogens are growing worse these day , research about antimicrobial peptides (AMPs) has become more important. Many AMPs have bean discovered in animals and plants, insects. In this study, was focused on magainin 2(MG2), an AMP secreted from African clawed frog Xenopus laevis. We changed MG2’s amino acid sequence or the number of helix number, and tested their effect on Escherichia coli’s growth. Our data indicate no change in E.coli’s growth curve, when MG2 was expressing. However, expression of MG3, which lacked the C-terminal helix of MG2, inhibited the growth of E.coli. The mechanisms behind requires further study.

    中文摘要---------------------------------------------------I 英文摘要--------------------------------------------------II Part I-----------------------------------------------------1 前言-------------------------------------------------------2 材料與方法-------------------------------------------------9 結果------------------------------------------------------12 討論------------------------------------------------------16 圖表------------------------------------------------------21 附圖------------------------------------------------------44 參考文獻--------------------------------------------------47 Part II---------------------------------------------------51 前言------------------------------------------------------52 材料與方法------------------------------------------------59 結果------------------------------------------------------66 討論------------------------------------------------------67 圖表------------------------------------------------------70 參考文獻--------------------------------------------------76

    Part I
    1.Wang W.X., Vinocur B., Altman A. (2003)responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14
    2.Majno G., Joris I. (1995) Apoptosis, Oncosis, and Necrosis - an overview of cell-death. American J. of Pathology 146: 3-15
    3.Saraste A., Pulkki K. (2000) Morphologic and biochemical hallmarks of apoptosis. CardiovasCcular Reserch 45: 528-537
    4.Kerr J.F., Wyllie A.H., Currie A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239-257
    5.Cohen G.M., Sun X.M., Fearnhead H. (1994) Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J Immunol 153: 507– 516.
    6.Martin S. J., Reutelingsperger C. P., McGahon A. J. (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182: 1545–1556.
    7.Greenberg J. (1996) Programmed cell death: a way of life for plants. Proc. Natl Acad. Sci. 93: 12094-12097
    8.Morgan P.W. & Drew M.C. (2004) Plant cell death and cell differentiation. In Plant Cell Death Processes, pp 19-36
    9.Simeonova E., Garstka M. (2004) Monitoring the mitochondrial transmembrane potential with the JC-1 fluorochrome in programmed cell death during mesophyll leaf senescence. Protoplasma 223: 143-153
    10.Schweichel J.U. & Merkel, H.J. (1974) The morphology of various types of cell death in prenatal tissue. Teratology 7: 253-266
    11.Clarke P.G.H. (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol. 181: 195-213
    12.Gozuacik D. & Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 12: 2891-2906
    13.Baechrecke E.H. (2003) Autophageic programmed cell death in Drosophila. Cell Death Differ. 10: 940-945
    14.Wouter G. & Ernst J. (2005) Woltering Many ways to exist? Cell death categories in plants. Trends in Plant Sci 10: 117-122
    15.Guido K. & John C. Reed (2000) Mitochondrial control of death. Nature Medicine 6: 513-519
    16.Shigekazu N. (1997) Apoptosis by Death Factor. Cell 88: 355–365
    17.Nagata S., Golstein P. (1995) The Fas death facter. Science 267: 1449-1456
    18.Stephen T., Martin R., Cristina M.H. (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl Acad. Sci. 88: 3671-3675
    19.Setsuko S., Mamoru A., Yutaka . (1999) Acinus is acaspase-3-activated protein required for apoptotic chromatin condensation. Nature 401: 168-172
    20.Liu X., Li P., Widlak P., Zou H., Luo X., (1998) The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl Acad. Sci. 95: 8461–8466
    21.Mosmann T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63
    22.Larsen T., Goodsel D., Cacio D. (1989) The structure of DAPI bound to DNA. Biomol. Struct. Dyn. 7: 477-491
    23.Ikegawa H., Yamamoto Y., Matsumoto H. (1998) Cell death caused by a combination of aluminum and iron in cultured tobacco cells. Physiol Plant 104: 474-478
    24.Zhigang L., Chuanmao Z., and Zhonghe Z. (2005) Nucleoplasmin regulates chromatin condensation during apoptosis. Proc. Natl Acad. Sci. 102: 2778-2783
    25.Michael J. Hendzel, Walter K. Nishioka, Yves Raymond (1998) chromatin condensation is not associated with apoptosis. J Bio Chem 273: 24470-24478
    26.Yamamoto Y., Kobayashi Y., Rama Devi S. (2002) Aluminum toxicity is associate with mitochondrial Dysfunction and the production of reactive oxygen species in plant cells. Plant Phys. 128: 63-72
    27.Simeonova E., Garska M., Koziol-Lipinska J. (2004) Monitoring the mitochondrial transmembrane potential with the JC-1 fluorochrme in programmed cell death during mesophyll leaf senescence. Protoplasma 223: 143-153
    28.Yao N., Eisfelder B.J., Marvin J. (2004) The mitochondrion-an organelle commonly involved in programmed cell death in Arabidopsis thaliana. The Plant Journal 40: 596-610
    29.Gobel E., AACH H.G. (1985) Studies of Chlorella protoplasts.II. Isolation and Fusion of protoplasts from Chorella saccharophila(KRUGER) nadson strain. Plant science 39: 213-218
    30.Yoshimori T. (2004) Autophagy: a regulated bulk degradation process inside cells. Biochem. Biophy. Res. Commun. 313: 453-458
    31.Klionsky D.J., Cregg J.M., Dunn E.A., Emr S.D., Sakai Y. (2003) A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5: 539-545
    Part II
    1.Kiss G., Michl H. (1962) Über das Giftsekret der Gelbbauchunke. Bombina variegata L, Toxicon (Oxford) 1: 33-39
    2.Bechinger B., Lohner K. (2006) Detergent-like action of linear amphipathic cationic antimicrobial peptides. Biochimica et Biophysica Acta 1758: 1529-1538
    3.Matsuzaki K., (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetype. BBA 1462: 1-10
    4.Brogden KimA. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Microbio. 3: 238-249
    5.Hoffmann JA., Kafatos FC., Janeway CA. (1999) Phylogenetic perspectives in innate immunity. Science 284: 1313-1318
    6.Zasloff M., (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389-395
    7.Zasloff M., Martin B., Chen H.C., (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. PNAS 85: 2449-5453
    8.Gennaro R., Zanetti M., (2000) Structure features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55: 31-49
    9.Park C.B., Matsuzaki K., (2000) Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the praline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl Acad. Sci. 97 8245-8250
    10.Yang L., Harroun T.A., Wiess T.M., Ding L. & Huang H. (2001) Barrel-stave model or toroidal model? A case study on melittin pore. Biophys. J. 81: 1475-1485
    11.Matsuzaki K. et al. (1998) Relationship of membrane curvature to the formation of pores by magainin2. Biochemistry 37: 11856-11863
    12.Matsuzaki K., Sugishita K., Harada M., Fuji N. & Miyajima K. (1997) Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys. Acta 1327: 119-130
    13.Futaki S. et al. (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Bio. Chem. 276: 5836-5840
    14.Subbalakshmi C. & Sitaram N. (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett. 160: 91-96
    15.Lenhrer R. et al. (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. 84: 553-561
    16.Campos, M. A. et al. (2004) Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect. Immun. 72: 7107–7114.
    17.Guo, L. et al. (1997) Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP–phoQ. Science 276: 250–253.
    18.Groisman, E. A . (1994) How bacteria resist killing by host-defense peptides. Trends Microbiol. 2: 444–448.
    19.Sieprawska-Lupa, M. et al. (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 48: 4673–4679.
    20.Wieprecht T., Dathe M., Schumann M., Krause E. (1996) Conformational and functional study of magainin2 in model membrane environments using the new approach of syatematic double-D-amino acid. Biochemistry 35: 10844-10853

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE