簡易檢索 / 詳目顯示

研究生: 莊坤福
Chuang, Kun-Fu
論文名稱: 熱元素效應在元件及金屬導線的可靠度研究
Heating element considerations in device and metal interconnect reliabilities
指導教授: 黃振昌
Hwang, Jenn-Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 160
中文關鍵詞: 晶圓層次等溫電致遷移金屬導線缺陷壽命預估內部加熱元素
外文關鍵詞: Wafer level, Isothermal electromigration, metal defect, Life time prediction, heating element
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 晶圓層次的等溫電致遷移測試是測試在高電流大約數百倍的正常使用電流。晶圓層次的等溫電致遷移測試時間非常短,大約數十分鐘,因此晶圓層次的等溫電致遷移測試在工業界是非常便宜測試製程。本篇論文的目的利用晶圓層次的等溫電致遷移測試方法應用(1).偵測晶圓廠金屬導線缺陷(2) 金屬導線電致遷移壽命預估。
    本篇論文係探討半導體晶圓廠金屬導線缺陷的偵測和金屬導線電致遷移壽命預估。晶圓層次的等溫電致遷移測試方法可以偵測晶圓廠金屬導線缺陷和金屬導線電致遷移壽命預估。晶圓層次的等溫電致遷移測試方法可以利用電阻變化率與測試時間關係圖去觀察到三相(three phases) 變化。第一相半導體晶圓廠金屬導線缺陷區,第二相金屬導線電致遷移壽命預估區和第三相金屬導線與Ti/TiN擴散層熔融區。
    第一相的失效模式是半導體晶圓廠早夭期的金屬導線缺陷,所以可以利用這個機制去偵測半導體晶圓廠金屬導線缺陷。在第一相電阻變化率為快速增加到1%飽和,因此設定1%電阻變化率為第一相的失效模式的準則,去偵測晶圓廠金屬導線缺陷。第二相的失效模式是典型的金屬導線電致遷移機制,所以可以利用這個機制去預估金屬導線的壽命。在第二相電阻變化率為常數,因此遵守封裝層次金屬導線電致遷移的電阻變化率20%,所以設定1.2 %電阻變化率為第二相的失效模式的準則,去預估金屬導線的壽命。本論文利用這個準則預估金屬導線的壽命,得到晶圓層次的金屬導線的壽命比封裝層次金屬導線的壽命多三倍。第三相的失效模式是金屬導線與Ti/TiN擴散層熔融區,這是由於區域性焦耳熱造成高溫,此溫度高達2930度,導致金屬導線與Ti/TiN擴散層熔融在一起。這個現象可以從電阻變化率突然的增加發現。
    晶圓層次的等溫電致遷移測試是一個快速的金屬導線認證方法,這個方法可以檢測到半導體晶圓廠金屬導線缺陷,也可以使半導體晶圓廠金屬導線有品質及可靠度的保證。同時晶圓層次的金屬導線電致遷移壽命預估比封裝層次金屬導線壽命預估又快又省錢。
    內部加熱元素可以建立等溫熱元素的環境去圍繞在可以在負偏壓元件和金屬導線電致遷移結構上。這種晶圓層次的測試方法,可以應用在半導體晶圓廠金屬導線缺陷檢測和金屬導線電致遷移壽命預估。


    The wafer-level isothermal electromigration (ISO-EM) test is performed at high current density that is approximately several hundred folds of the normal current density in use. The ISO-EM stress time is very short, around several tens minutes. The ISO-EM test is very low-cost process in industry. The objectives of the dissertation are to investigate (1) the detection of manufacture defects and (2) the lifetime prediction of metal interconnect of the wafer level ISO-EM test.
    The detection of manufacture metal defects and the EM lifetime prediction of metal interconnect are proposed in this dissertation. The manufacture metal defects and EM failure modes can be detected by the resistance change ratio with stress time curves in wafer level ISO-EM test. The relationship between resistance change ratio and stress time has been divided into 3 phases (I, II and III) in the wafer ISO-EM test.
    The failure modes of the phase I is correlated to the manufacture metal defects. The resistance change ratio of 1% is set to detect the manufacture defects in the manufacture FAB. The abnormal metal process in FAB can be detected on phase I. The failure modes of phase II are typical EM failure modes, indicating that EM occurs on phase II. The resistance change rate of 1.2% is set to predict EM lifetime. The lifetime derived from the wafer level ISO-EM test is about three times longer than that from the package level EM test. Melting at both the metal line and the diffusion barrier layer occur on phase III, which is due to local temperature higher than 2930oC (melting point of TiN) at high current density during stress. The wafer level ISO-EM test is the fast EM test process, which can be used to monitor the manufacture defects and to predict the EM lifetime. The lifetime prediction of the wafer level ISO-EM is fast and low cost compared to the package level EM test.
    The concept of internal heating element can be also applied to create isothermal environment around the negative bias temperature instability (NBTI) and EM test structures for both NBTI and EM tests. The internal heating element can raise rapidly the test device structure to elevated temperature. No external heating source, such as a thermal chuck or an oven, is needed. It is a quick wafer level reliability test and can be used in in-line monitoring and screening the devices. In the wafer level EM test, poly-silicon or tungsten in various shapes can be also embedded underneath the regular metal test lines in the wafer. The poly-silicon or tungsten in various shapes act as an internal heating element, i. e. internal furnace. In this design, both current density and temperature can be controlled independently during EM stressing. No package assembly is required in the wafer level EM with embedded structure. It is useful as in-line defect monitoring and life time prediction in the manufacture fabrication process at the wafer level.

    Contents Abstract (Chinese)…………………………………………………….I Abstract (English)……………………………………………………………III Acknowledgement (Chinese)…………………………………………..VI Contents ……………………………………………………………………………..VII List of Tables…………….……………….…………………………………....XII List of Figures..…………..…………………………...…………….……...XIII CHAPTER 1: Introduction…………………………………...………………............1 1-1 Introduction…………………………………………………………………….1 1-2 Motivation and objectives for the wafer level isothermal electromigration failure criteria setting…………………………………………………………..3 1-3 Motivation and objectives for heat-element of negative bias temperature instability and electro-migration……………………………………………….4 1-4 Thesis organization…...…………………………………………….5 Reference ………………………………………………………………………..7 CHAPTER 2 Literature Review on the Electromigration……………………9 2-1 Electromigration (EM)…………………………………………………….10 2-1-1 Diffusion and atom movement in a solid………………………………11 2-1-2 Theory of Electromigration ………………………………………14 2-1-3 Stress gradient on the electromigration…………………..16 2-2 Wafer level electromigration……………………………………………17 2-2-1 SWEAT of wafer level EM……………………………………………19 2-2-2 Wafer level isothermal EM test………………………………………20 References……………………………………….…………………………….23 CHAPTER 3 Heating element design and experimental procedures….26 3-1 Testing structure design for electromigration…………………………27 3-1-1 Metal-line length design……………………………………………28 3-1-2 Bonding pad design………………………………………………….29 3-1-3 Stress structures……………………………………………………..30 3-2 Package level Electromigration………………………………………….31 3-2-1 EM testing equipment and methodology…………………………32 3-2-2 Statistic model for data fitting……………………………………..33 3-2-3 Black equation of the acceleration factors………………………33 3-2-4 Lifetime prediction and specification……………………………..34 3-3 Temperature coefficient resistance (TCR)…………………………….36 3-3-1 TCR (Tref) calibration steps……………………………………… 38 3-4 Wafer level Isothermal (ISO) EM Testing Method…………………….41 References…………………………………………………………………….55 CHAPTER 4 Wafer level ISO-EM test …………………………………………57 4-1 The test structure of the Wafer level ISO-EM test…………………..57 4-2 The Package level EM stress……………………………………………58 4-2-1 Experiments and life time prediction…………………………….59 4-2-2 Failure analysis for the package level EM stress………………61 4-2-2-1 OBIRCH…………………………………………………..61 4-2-2-2 A typical ORBICH operation process………………….62 4-2-2-3 failure modes after the package level EM test……..63 4-3 Wafer level ISO-EM test……………………………………………..64 4-3-1 Phase I (resistance change ratio (R.C.R.) < 1%)…………65 4-3-2 Phase II: (1% □ resistance change ratio (R.C.R.) < 1.5 %)………67 4-3-3 Phase III: (resistance change ratio (R.C.R.) □ 1.5%)………..68 4-4 Direct observations of wafer level ISO-EM failures…………..69 4-4-1 OBIRCH………….……………………………………………………70 4-4-2 Failure modes and analysis on different phases………..70 4-4-2-1 The failure analysis of the phase I (x< 1%)…..71 4-4-2-1-1 The failure position analysis by OBRICH…………..71 4-4-2-1-2 The physical failure analysis (morphology analysis).71 4-4-2-2 The failure analysis of the Phase II (1% □ x < 1.5%)………………………………………………………………73 4-4-2-2-1 The failure position analysis by OBRICH………74 4-4-2-2-2 The physical failure analysis (morphology analysis)………………………………………………….74 4-4-2-3 The failure analysis of the Region III…………………..77 4-4-2-3-1 The electrical failure analysis……………………78 4-4-2-3-2 The physical failure analysis……………………78 4-5 The voids in the wafer level isothermal EM stress……………………82 4-5-1 Void formation induced by electromigration in the wafer level ISO-EM test………………………………………………………………….82 4-5-2 The resistance of a metal line with a void at electromigration test…84 4-5-3 The cross section studies of a void in the metal test line stressed in the wafer level ISO-EM test…………………………………………88 4-5-4 The resistance change rate for a metal line with a big void and many small voids after the wafer level ISO-EM stress……………………………91 4-6 Summary………………………………………..…………….……92 References………………………………………………………………………..113 CHAPTER 5 Criterion setting for the Wafer level ISO-EM test ………………….114 5-1 Summary of the relationship between resistance change rate (□R/Ri) and stress time curve…………………………………………………………………115 5-2 The failure criteria setting of the wafer level ISO-EM…………………116 5-2-1 MD criterion setting of the wafer level ISO-EM (phase I)……..116 5-2-2 EM criteria setting of the wafer level ISO-EM (phase II)………..117 5-3 The lifetime prediction for wafer level ISO-EM and package level test...118 5-4 Summary……………………………………………………….……123 Reference………………………………………………………….….125 CHAPTER 6 NBTI using an isothermal heater……………………………….128 6-1 Background of invention…………………………………………………129 6-2 Objectives of the invention……………………………………………..131 6-2-1 Isothermal heating procedure……………………………………132 6-2-2 The structure design of the heating element…………………..136 6-2-2-1 Brief description of the drawings…………………….136 6-2-2-2 The description for substrate structure of the heating element…………………………………………………………..137 6-2-2-3 The description for the around structure of the heating element…………………………………………………………..137 6-2-2-4 The description for sandwich structure of the heating element………………………………………………………….138 6-2-3 The material of the heating element…………………………..139 6-3 Summary…………………………………………………….……139 Reference…………………………………………………………………..143 CHAPTER 7 The wafer level EM embedded with internal heating element..145 7-1 Background of the invention……………………………………………145 7-2The invention…………………………………………….147 7-2-1 Brief description of the drawings……………………………….148 7-2-2 Descriptions of some embodiments………………………….149 7-2-2-1 The Cross-sectional view of the heat element and EM structure…………………………………………………………150 7-2-2-2 The Top view of the heating element and EM structure…152 7-3 Summary…………………………………………………….……153 Reference…………………………………………………………………….157 CHAPTER 8 Conclusions……………………………………………………..158 Publication…………………………………………………………………………160

    [1.1] Semiconductor Equipment and Materials International (SEMI) Association
    [1.2] Crook DL “Evolution in VLSI reliability engineer” IEEE international reliability physics symposium proceedings, 1990
    [1.3] Turner T “Enhanced wafer level electro-migration test structure for process reliability control” International Wafer Level Reliability Workshop 1990
    [1.4] Messick C “Implementation of wafer level quality program” International Wafer Level Reliability Workshop 1990
    [1.5] Robert E. “A new wafer-level isothermal joule-heated electro-migration test for rapid testing of integrated-circuit interconnects” J. Applied Physic 61 (9), May 1987.
    [1.6] Charles C. Hong “Breakdown Energy Of Metal (BEM) – A New Technique For Monitoring Metallization Reliability At Wafer Level” IEEE international reliability physics symposium proceedings, 1985
    [1.7] JEDEC STANDARD 61A.01 “Isothermal electromigration test procedure” October 2007
    [1.8] Tom C. Lee “Comparison Of Isothermal, Constant Current And SWEAT Wafer Level EM Testing Methods” IEEE international reliability physics symposium proceedings, 2001
    [1.9] Young Bae Park “Package- and wafer-level tests on Al-Cu interconnect with Ti and TiN under layers” metals and materials international, Vol.7 No.5, 2001
    [1.10] O. Aubel “Practical considerations for wafer-level electromigration monitoring in high volume production” IEEE international reliability workshop, 2006
    [1.11] Desai, P.D., James, H.M. and Ho, C.Y., “Electrical resistivity of Aluminum and Manganese” J. Phys. Chem. Ref. Data, Vol. 3, No. 4
    [2.1] K. J. Puttlitz, K. A. StalterM. “Handbook of lead-free solder technology for microelectronic assemblies”
    [2.2] D. Gupta, Thomas J. Watson “Diffusion processes in advanced technological materials” William Andrew, 2005
    [2.3] K.N. Tu. “Recent advance on electromigration in very-large-scale-integration of interconnects”, J. Appli Phys. Vol. 94, No. 9, 2003.
    [2.4] K. N. Tu, J. W. Mayer, and L. C. Feldman, "Electronic Thin Film Science - for Electrical Engineers and Materials Scientists", Macmillan, 1992
    [2.5] K.N. Tu, “Electromigration in stress thin film” Phys. Rev. B., vol. 45, p 1409-1413, 1992
    [2.6] T. Kwok and P.S. Ho, “Electromigration in metallic thin films” Diffusion phenomena in thin film and microelectronic materials, 1988
    [2.7] H.B. Huntington, A.R. Grone “current-induced marker motion in gold wire” J. phys. Chem. Solids, vol. 20, pp 76-87, 1961
    [2.8] I.A. Blech “Electromigration in thin aluminum films on titanium nitride” J. Appli Phys. 47, 1967
    [2.9] J.R. Lloyd “Electro-migration and mechanical stress” Microelectronic Engineering, 1999
    [2.10] B. Root, T. Turner “Wafer-level Electromigration tests for production monitoring” IEEE/international reliability physics symposium, 1985.
    [2.11] R. Jones, L Smith “A new wafer-level isothermal joule-heated electromigration test for rapid testing of integrated-circuit interconnect” in IEEE/international reliability physics symposium, 1986
    [2.12] JEP119A “A procedure for performing SWEAT” 2003
    [2.13] W.Q. Meeker “Pitfalls of accelerated testing” IEEE transaction on reliability, Vol. 47, no. 2, June 1998
    [2.14] W. Q. Meeker and L. A. Escobar, Statistical methods for reliability data, John Wiley & Sons Inc, U.S.A. 1998 Ch. 19.
    [2.15] Cher Ming Tan “A reliability statistics perspective on the pitfalls of standard wafer-level electromigration accelerated test” J. of electronic testing: Theory and applications 17, 2001
    [2.16] C.Y. Kuo, H.C. Yuan “Isothermal wafer-level electromigration test for the characterization of metal system reliability monitor” IEEE international reliability workshop, 2001
    [2.18] Deborah Tibel “Comparison of Via/line package level Vs. wafer level result” IEEE international reliability physics symposium, 2001
    [2.19] C. Ryu “Experiment comparison of wafer level and packaged electromigration tests” IEEE international reliability physics symposium, 2001
    [2.20] Shun-Yi lee “Real case study for isothermal EM test as a process control methodology” IEEE international reliability physics symposium proceeding, 2001
    [2.21] Jun-Cheng Andy Huang “Some practical concerns on isothermal electromigration tests” IEEE transactions on semiconductor manufacturing, Nov. 2001
    [3.1] R.E. Jones, L.D. Smith, “A new wafer-level isothermal Joule-heated electromigration test for rapid testing of integrated-circuit interconnect” J. Appl. Physics, Vol. 61, 1987
    [3.2] R.S. Hijab, J.T. Yue, “The isothermal wafer level test for VLSI interconnect”, WLR Final report, 1992
    [3.3] M. Impronta, S. Farris, A. Scorzoni, “An improved isothermal electromigration test for Cu-damascene characterization” in Microelectronics Reliability, Vol. 44, 2004
    [3.4] M. Impronta, S. Farris, A. Scorzoni, “Resistance instability in Cu-damascene structures during the isothermal electromigration test” International Reliability Workshop Final Report, 2005
    [3.5] A. Blech “Electro-migration in thin film aluminum films on titanium nitride” J. Appl. Phys, 1976
    [3.6] J.R. Lloyd “Electro-migration and mechanical stress” Microelectronic Engineering, 1999
    [3.7] Jun-Cheng Huang “Some practical concerns on isothermal electro-migration tests” IEEE transactions on semiconductor manufacturing, 2001
    [3.8] L. Tielemans “Errors made while performing reliability experiments” IEEE international reliability physics symposium, 2001 tutorial
    [3.9] J.R. Black, “Electromigration – a brief survey and some recent result” IEEE Transaction electron device, 1969
    [3.10] JEDEC STANDARD 33B “Standard method for measuring and using the temperature coefficient of resistance to determine the temperature of a metallization line”, February 2004
    [3.11] Neter, John, Wasserman, William, and Whitmore, G.A., Applied Statistics, Allyn and Bacon, Inc., Boston, 4th printing, August 1979.
    [3.12] JEDEC STANDARD 61A.01 “Isothermal electromigration test procedure” October 2007
    [4.1] G.A. Klutke “A critical look at the bathtub curve” IEEE transaction on reliability, March 2003
    [4.2] T. Marieb “Observations of electromigration induced void nucleation and growth in polycrystalline and near-bamboo passivated Al lines” J. Appl. Phys., 78, 1026 ~1032, 1995
    [4.3] E. Arzt “Electromigration failure by shape change of voids in bamboo line” J. Appl. Phys., 76, 1563~1571, 1994
    [4.4] R.G. Filippi, “The electromigration short-length effect in Ti-AlCu-Ti metallization with tungsten studs” J. Appl. Phys., 78, 3756~3768, 1995
    [4.5]R.G. Filippi, “The effect of current density, stripe length, stripe width, and temperature on resistance saturation during electromigration testing”, J. Appl. Phys., 91, 5787 ~ 5795, 2002
    [5.1]Yuan Li “Fast electromigration wafer mapping for wafer fab process monitoring and improvement” Microelectronics reliability, 2008 Aug.
    [5.2] A. Zitzelsberger, R. Bauer, J. v. Hagen, M. Lepper, and A. Pietsch, “Electromigration testing on via line structures with fast wafer level tests,” Proceedings of the IEEE 2001 International Interconnect Technology Conference, 2001, pp. 180-182.
    [5.3] T. C. Lee, M. Ruprecht, D. Tibel, T. D. Sullivan, and S. Wen, “Electromigration study of Al and Cu metallization using WLR isothermal method” Proceeding of 40th Annual IEEE international reliability physics symposium proceeding, 2002, pp. 327-335.
    [5.4] D. Brisbin, and T. Turner, “Isothermal versus standard wafer electromigration test for the characterization of metal systems,” IEEE International Integrated Reliability Workshop Final Report, 1997, pp.136-137.
    [5.5] X. Liu, K.F. Lo, Q. Guo, and J. Cai, “A successful application of WLR fast test on Al via process optimization,” IEEE International Integrated Reliability Workshop Final Report, 1999, pp.74-77.
    [5.6] J. v. Hagen, R. Bauer, S. Penka, and A. Pietsch, W. Walter, A. Zitzelsberger, “Extrapolation of highly accelerated electromigration tests on copper to operation conditions,” IEEE International Integrated Reliability Workshop Final Report, 2002, pp.41-44.
    [5.7] Shun-Yi lee “Real case study for isothermal EM test as a process control methodology” IEEE international reliability physics symposium proceeding, 2001
    [5.8] Jun-Cheng Andy Huang “Some practical concerns on isothermal electromigration tests” IEEE transactions on semiconductor manufacturing, Nov. 2001
    [5.9] Changsup Ryu “Experiment comparison of wafer level reliability and packaged electromigration tests” IEEE international reliability physics symposium proceedings, 2001.
    [5.10]Deborah Tibel “Comparison of Via/line package level Vs. wafer level result” IEEE international reliability physics symposium proceedings, 2001
    [5.11] S. Foley, “A comparison between normally and high accelerated electromigration tests” Microelectronics and reliability, vol 38, pp1021 -1027, 1998
    [5.12] M. Shatzkes, J.R. Lloyd “A model for conductor failure considering diffusion concurrently with electromigration resulting in a current exponent of 2” J. Appl. Phys. 59, 1986
    [5.13] R. Jones, L. Smith “A new wafer-level isothermal Joule-heating electromigration test for rapid testing of integrated-circuit interconnect” J. Appl. Phys. Vol. 61, No. 9, 1987
    [6.1] K.O. Jeppson, “Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices” J. appl. Phys, 1997
    [6.2] G. La Rosa “NBTI-Channel hot carrier effects in pMOSFETs in Advanced CMOS technologies” IEEE international reliability physics symposium proceedings, 1997
    [6.3] C. Schlunder “ Trapping mechanisms in negative bias temperature stressed pMOSFETs” Microelectronic reliability, 1999
    [6.4] W. Muth “Bias temperature instability assessment of n- and p- channel MOS transistors using a polysilicon resistive heated scribe line test structure” Microelectronics reliability, 2004 Aug.
    [6.5] A. Martin “An introduction to fast wafer level reliability monitoring for integrated circuit mass production” microelectronics reliability, 2004
    [6.6] F. Jensen, “Electronic component reliability fundamentals, modeling, evaluation, and assurance” Text book
    [6.7] T.K. Kang, “Self-heating p-channel metal–oxide–semiconductor field-effect transistors for reliability monitoring of negative-bias temperature instability” Japan J. apply. phys. No. 46, 2007
    [6.8] G. Chen “Dynamic NBTI of PMOS transistors and its impact on device lifetime” IEEE international reliability physics symposium proceedings, 2003
    [6.9] D. Varghese “Hole energy dependent interface trap generation in MOSFET Si/SiO2 interface” IEEE electron device letters, Vol. 26, No. 8, 2005
    [6.10] G. L. Rosa “structure and method for thermally stressing or testing a semiconductor device” US patent No. 7375371 B2, May 2008
    [7.1] A. Martin “An introduction to fast wafer level reliability monitoring for integrated circuit mass production” microelectronics reliability, 2004
    [7.2] H.V. Nguyen “Effect of thermal gradient on the electomigration life time in power electronics” IEEE international reliability physics symposium proceedings, 2004
    [7.3] Z. Wenbin “W-Plug via electromigration I CMOS process” Journal of semiconductors, Vol 30, No. 5, 2009
    [7.4] A. Brand “Intel’s 0.25 Mircon 2.0 volts logic process Technology” Intel technology Journal Q3 1998

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE