簡易檢索 / 詳目顯示

研究生: 蔡耿彰
Tsai Keng-Chang
論文名稱: SARS-CoV 3C-like蛋白酶之全新小化合物抑制劑的虛擬篩選和三維定量結構活性關係之研究
Virtual screening and 3D-QSAR study on novel small molecular inhibitors for SARS-CoV 3C-like Protease
指導教授: 林志侯
Lin Thy-Hou
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 60
中文關鍵詞: 分子對接三維定量結構活性關係嚴重急性呼吸道症狀比較分子力場比較分子相似性指數分析蛋白酶藥效基團虛擬篩選循理性藥物設計電腦輔助藥物設計
外文關鍵詞: DOCK, 3D-QSAR, SARS, CoMFA, CoMSIA, Protease, pharmacophore, Virtual screening, Rational Drug Design, Computer adied Drug Design
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Severe Acute Respiratory Syndrome (SARS),嚴重急性呼吸道症狀,2003年四月起已在台灣造成許多病患感染及傷亡之快速流行的傳染病。截至目前為止尚未獲得具療效之藥物上市。由 SARS-CoV 之基因體發現了六個主要的蛋白:S (spike protein), Polymerase, M (membrane protein), N (nucleocapsid protein ), E (envelope protein), and 3CLpro (3C-like protease or Mpro)。而其中3CLpro 蛋白酶可將一具功能之polypeptide切割斷裂後使 SARS-CoV 病毒趨於成熟。由於此蛋白在病毒複製之過程中扮演一重要的角色,因此可視為具潛力發展為抗SARS新藥之標靶蛋白。以SARS-CoV 3CL蛋白酶為基礎對Maybridge化合物資進行電腦模擬篩選,實驗結果發現經由分子對接 (Docking) 59,363化合物,從中挑選出93個化合物,進行對SARS-CoV 3CL pro複製抑制之生物試驗,實驗結果顯示命中21個活性化合物,活性範圍為 IC50= 6 μM ~ 32 μM。我們繼續尋找從21活性化合物為出發點,尋找MAYBRIDGE、CHEMBRIDGE和SPEC_SC化合物資料庫,陸續找到92個衍生物,並且77個有活性,總計98個有活性。其中有28活性化合物具有相同的主架構,活性範圍為 IC50 = 3μM ~ 1000 μM。
    最後,我們以配位體為基礎 (ligand-based) 探討28個先導化合物的結構與活性關係。透過3D-QSAR的工具,包含CoMFA (Comparative Molecular Field Analysis)、CoMSIA (comparative molecular similarity indices analysis) 和藥效基團 (pharmacophore)分析,將會輔助前導化合物最佳化過程 (lead optimization procedure),以獲得最具潛力之抗 SARS 藥物。


    Severe Acute Respiratory Syndrome (SARS), an epidemic sprout rapidly in Taiwan, was caused by a newly discovered coronavirus which has aroused severe illness and death since April 2003. Until now, there is no efficacious therapy available. The genome of SARS-CoV (SARS coronavirus) contains six key proteins: S (spike protein), Polymerase, M (membrane protein), N (nucleocapsid protein), E (envelope protein), and 3CLpro (3C-like protease or Mpro). Among these six proteins, 3CLpro cleaves a functional polypeptide and consequently leads to the maturation of SARS-CoV. Since its critical role in virus replication cycle, this protein becomes an attractive target to develop some anti-SARS drugs. Maybridge database was screened by a structure-based virtual screening approach based on the SARS-CoV 3CLpro. It has been found that of the 59,363 compounds docked, further tested by inhibition assay of SARS-CoV replication. 21 (IC50 = 6μM~32μM) were active out of 93. We continued to search MAYBRIDGE , CHEMBRIDGE and SPCE_SC Databases from our 21 active compounds, and found 92 derivative. Out of 92, 77 were active. Then from total 98 active compounds, we identified 28 compounds (IC50 = 3μM ~ 1000μM) with similar structure to be our lead compound.
    Finally, the ligand-based would be applied as a complementary approach for studying the structure activity relationship for these 28 lead compounds found. Some advanced 3D-QSAR techniques, including CoMFA (Comparative Molecular Field Analysis) , CoMSIA (comparative molecular similarity indices analysis) and pharmacophore , will then be employed to facilitate the lead optimization procedure to obtain compounds with more potency against SARS-CoV.

    Content CHINESE ABSTRACT ENGLISH ABSTRACT AKOWLEDGEMENT CHAPTER 1 Part A:Introduction-------------------------------------------------------------------------1 CHAPTER 2 Part B:MATERIALS AND METHODS-----------------------------------------------4 2-1 Virtual High Throughput docking procedure---------------------------4 2-2 SARS-CoV 3CL-Protease Inhibition Assay------------------------------6 2-3 CoMFA、CoMSIA and Pharmacophore 3D QSAR Models---------8 CHAPTER 3 Part C:RESULTS AND DISCUSSION-----------------------------------------------13 CHAPTER 4 Part D:CONCLUSION------------------------------------------------------------------21 REFERENCES AND NOTES--------------------------------------------------------------22 Table legends-----------------------------------------------------------------------------------30 Figure legends----------------------------------------------------------------------------------36 Appendix-1 SARS-CoV 3CL Protease Strategy--------------------------------------46 Appendix-2 First, Hit 21 inhibitors anti-SARS-CoV 3CL Protease----------47 Appendix-3 98 inhibitors for SARS-CoV 3CL Protease-------------------------47 Appendix-4 Publications-------------------------------------------------------------------6

    REFERENCES AND NOTES
    (1) Poutanen, S. M.; Low, D. E.; Henry, B.; Finkelstein, S.; Rose, D.; Green, K.; Tellier, R.; Draker, R.; Adachi, D.; Ayers, M.; Chan, A. K.; Skowronski, D. M.; Salit, I.; Simor, A. E.; Slutsky, A. S.; Doyle, P. W.; Krajden, M.; Petric, M.; Brunham, R. C.; McGeer, A. J. Identification of severe acute respiratory syndrome in Canada. N. Engl. J. Med. 2003, 348, 1995.
    (2) Lee, N.; Hui, D.; Wu, A.; Chan, P.; Cameron, P.; Joynt, G. M.; Ahuja, A.; Yung, M. Y.; Leung, C. B.; To, K. F.; Lui, S. F.; Szeto, C. C.; Chung, S.; Sung, J. J. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 2003, 348, 1986.
    (3) Rota, P. A.; Oberste, M. S.; Monroe, S. S.; Nix, W. A.; Campagnoli, R.; Icenogle, J. P.; Penaranda, S.; Bankamp, B.; Maher, K.; Chen, M. H.; Tong, S.; Tamin, A.; Lowe, L.; Frace, M.; DeRisi, J. L.; Chen, Q.; Wang, D.; Erdman, D. D.; Peret, T. C.; Burns, C.; Ksiazek, T. G.; Rollin, P. E.; Sanchez, A.; Liffick, S.; Holloway, B.; Limor, J.; McCaustland, K.; Olsen-Rasmussen, M.; Fouchier, R.; Gunther, S.; Osterhaus, A. D.; Drosten, C.; Pallansch, M. A.; Anderson, L. J.; Bellini, W. J. Characterization of a novel Coronavirus associated with severe acute respiratory syndrome. Science 2003, 300, 1394.
    (4) Leng, Q.; Bentwich, Z. A novel Coronavirus and SARS. N. Engl. J. Med. 2003, 349, 709.
    (5) Holmes, K. V. SARS-associated Coronavirus. N. Engl. J. Med. 2003, 348, 1948.
    (6) Marra, M. A., S. J. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson, Y. S. Butterfield, J. Khattra, J. K. Asano, S. A. Barber, S. Y. Chan, A. Cloutier, S. M. Coughlin, D. Freeman, N. Girn, O. L. Griffith, S. R. Leach, M. Mayo, H. McDonald, S. B. Montgomery, P. K. Pandoh, A. S. Petrescu, A. G. Robertson, J. E. Schein, A. Siddiqui, D. E. Smailus, J. M. Stott, G. S. Yang, F. Plummer, A. Andonov, H. Artsob, N. Bastien, K. Bernard, T. F. Booth, D. Bowness, M. Czub, M. Drebot, L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla, S. Jones, H. Feldmann, A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stroher, G. A. Tipples, S. Tyler, R. Vogrig, D. Ward, B. Watson, R. C. Brunham, M. Krajden, M. Petric, D. M. Skowronski, C. Upton, and R. L. Roper.. The genome sequence of the SARS-associated coronavirus. Science 2003, 1399–1404.
    (7) Snijder, E. J., P. J. Bredenbeek, J. C. Dobbe, V. Thiel, J. Ziebuhr, L. L. Poon, Y. Guan, M. Rozanov, W. J. Spaan, and A. E. Gorbalenya. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 2003:991–1004.
    (8) Thiel, V., K. A. Ivanov, A. Putics, T. Hertzig, B. Schelle, S. Bayer, B. Weissbrich, E. J. Snijder, H. Rabenau, H. W. Doerr, A. E. Gorbalenya, and J. Ziebuhr.. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 2003, 84:2305–2315.
    (9) Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., and Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs, Science. 2003, 300, 1763-1767.
    (10) Liu, S., Pei, J., Chen, H., Zhu, X., Liu, Z., Ma, W., He, F., and Lai, L. Modeling of the SARS coronavirus main proteinase and conformational flexibility of the active site, Beijing Daxue Xuebao. 2003, 35, 62-65.
    (11) Xiong, B., Gui, C. S., Xu, X. Y., Luo, C., Chen, J., Luo, H. B., Chen, L. L., Li, G. W., Sun, T., Yu, C. Y., Yue, L. D., Duan, W. H., Shen, J. K., Qin, L., Shi, T. L., Li, Y. X., Chen, K. X., Luo, X. M., Shen, X., Shen, J. H., and Jiang, H. L. A 3D model of SARS-CoV 3CL proteinase and its inhibitors design by virtual screening, Acta Pharmacol. Sin. 2003, 24, 497-504.
    (12) Jenwitheesuk, E.; Samudrala, R. Identifying inhibitors of the SARS Coronavirus proteinase. Bioorg. Med. Chem. Lett. 2003, 13, 3989.
    (13) Toney JH, Navas-Martin S, Weiss SR, Koeller A. Sabadinine: a potential non-peptide anti-severe acute-respiratory-syndrome agent identified using structure-aided design. J Med Chem. 2004, 47, 1079-80.
    (14) Liu Z, Huang C, Fan K, Wei P, Chen H, Liu S, Pei J, Shi L, Li B, Yang K, Liu Y, Lai L. Virtual screening of novel noncovalent inhibitors for SARS-CoV 3C-like proteinase. J Chem Inf Model. 2005, 45, 10-17.
    (15) Chen L, Gui C, Luo X, Yang Q, Gunther S, Scandella E, Drosten C, Bai D, He X, Ludewig B, Chen J, Luo H, Yang Y, Yang Y, Zou J, Thiel V, Chen K, Shen J, Shen X, Jiang H. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J Virol. 2005, 79, 7095-103.
    (16) Chen S, Chen L, Tan J, Chen J, Du L, Sun T, Shen J, Chen K, Jiang H, Shen X. Severe acute respiratory syndrome coronavirus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization. Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations. J Biol Chem. 2005, 280:164-73
    (17) Liu B, Zhou J. SARS-CoV protease inhibitors design using virtual screening method from natural products libraries. J Comput Chem. 2005, 26484-90.
    (18) Chou, K. C., Wei, D. Q., and Zhong, W. Z. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS, Biochem. Biophys. Res. Commun. 2003, 308, 148-151.
    (19) Zhang XW, Yap YL, Altmeyer RM. Generation of predictive pharmacophore model for SARS-coronavirus main proteinase. Eur J Med Chem. 2005, 40, 57-62.
    (20) Sirois S, Wei DQ, Du Q, Chou KC. Virtual screening for SARS-CoV protease based on KZ7088 pharmacophore points. J Chem Inf Comput Sci. 2004, 44, 1111-22.
    (21) Anand, K., Palm, G. J., Mesters, J. R., Siddell, S. G., Ziebuhr, J., and Hilgenfeld, R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alphahelical domain, EMBO J. 2002, 21, 3213-3224.
    (22) Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R., and Rao, Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor, Proc. Natl. Acad. Sci. 2003, 100, 13190-13195.
    (23) Ewing, T. J. A., and I. D. Kuntz.. Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comput. Chem. 1997, 18, 1175–1189.
    (24) Shoichet, B. K., S. L. McGovern, B. Wei, and J. J. Irwin.. Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 2002, 6:439–446.
    (25) Ewing, T. J. A., and I. D. Kuntz.. Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comput. Chem. 1997, 18, 1175–1189.
    (26) Cornell, W. D., P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197.
    (27) Gasteiger, J., and M. Marsili.. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron. 1980, 36, 3219–3228.
    (28) Marsili, M., and J. Gasteiger. Pi-charge distributions from molecular topology and pi-orbital electronegativity. Croat. Chem. Acta. 1980, 53, 601–614.
    (29) Purcell, W. P., and J. A. Singer.. Brief review and table of semiempirical parameters used in the Hu¨ckel molecular orbital method. J. Chem. Eng. Data 1967, 12, 235–246.
    (30) SYBYL 6.9.1; The Tripos Associates; 1699 S. Hanley Rd., St. Louis, MO.
    (31) Kuo, C.-J., Chi, Y.-H., Hsu, T.-A. & Liang, P.-H. Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate Biochem. Biophys. Res. Commun. 2004, 318, 862–867
    (32) Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YS, Hsu HH, Huang HC, Wu D, Brik A, Liang FS, Liu RS, Fang JM, Chen ST, Liang PH, Wong CH. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci. 2004, 101, 10012-7
    (33) Sutter, J.; Gu¨ ner, O.; Hoddmann, R.; Li, H.; Waldman, M. In Pharmacophore, Perception, Development and Use in Drug Design; Gu¨ ner, O. F., Ed.; International University Line: La Jolla, CA, 2000; pp 504-506.
    (34) M. Clark, R.D. Cramer, III and N. Van Opdenbosch. Validation of the General Purpose Tripos 5.2 Force Field. J. Comput. Chem. 1989, 10, 982-1012.
    (35) Richard D. Cramer, , III David E. Patterson, Jeffrey D. Bunce. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959-5967.
    (36) Gerhard Klebe, Ute Abraham, Thomas Mietzner; Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem. 1994, 37, 4130-4146.
    (37) Vellarkad N. Viswanadhan, Arup K. Ghose, Ganapathi R. Revankar, Roland K. Robins. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J. Chem. Inf. Comput. Sci. 1989, 29, 163-172
    (38) G. Klebe. The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands. J. Mol. Biol. 1994, 237, 212-235
    (39) Catalyst, version 4.9 (software package); Accelrys, Inc. (previously known as Molecular Simulations, Inc.): San Diego . CA, 2003, http://www.accelrys.com
    (40) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaninathan, S.; Karplus, M. CHARMM: A program for macromolecular energy, minimization and dynamics calculations. J. Comput. Chem. 1983, 4, 187-217.
    (41) Smellie, A.; Teig, S. L.; Tobwin, P. Poling: Promoting conformational variation. J. Comput. Chem. 1995, 16, 171-187.
    (42) Schechter, I and Berger, A, On the size of the active site in proteases Biochem. Biophys. Res. Com., 1967, 27, 157-162.
    (43) Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. LIGPLOT: a program to generate schematic
    diagrams of protein-ligand interactions. Protein Eng. 1995, 8, 127-134.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE