簡易檢索 / 詳目顯示

研究生: 鄭佳怡
Cheng, Chia-Yi
論文名稱: Studies on New Methodologies via Heteroatom-Directed Conjugate Addition for Synthesis toward Solanoeclepin A
指導教授: 磯部稔
Minoru Isobe
口試委員: 廖俊臣
汪炳鈞
林俊成
陳清玉
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 283
中文關鍵詞: 共軛加成反應四員環五員環乙炔碸
外文關鍵詞: heteroatom-directed conjugate addition, cyclbutane, Sulfonyl Acetylene
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究目的已開發新的合成方法,以建構五員環和四員環化合物,進而運用在天然物solanoeclepin A的合成上。其中我們先探討乙炔碸對於多種親核劑加成的反應性,依據親核劑的強度我們得到三種不同類型的產物 (i) 加成產物93, (ii) 加成(共軛加成)產物94與 (iii) 取代產物95。接著再利用分子內共軛加成環化反應可得到環戊酮化合物120。

    另一方面,我們也利用具有光學活性(R)-香旱芹酮 87經由數部合成反應製備前驅物169。隨後利用heteroatom-directed conjugate addition方法誘導親核劑與環氧化合物169進行加成反應與陰離子環化反應,可合成得到環丁烷化合物170。


    Contents 中文摘要 i Abstract ii Acknowledgments iii Abbreviations iv Contents vi Figure Index x Table Index xi Chapter I. Introduction 1 I-1. Introduction of Heteroatom-Directed Conjugate Addition 1 I-1-1 Heteroatom-Directed Conjugate Addition by - or-oxygen chelation 2 I-1-2 Heteroatom-Directed Conjugate Addition in the Synthesis of Natural Products 4 I-2. Introduction and Synthetic Strategy of Solanoeclepin A 6 I-2-1. Introduction and Synthetic Review of Solanoeclepin A 6 I-2-2. Cyclobutane Ring Formation through Heteroatom-Directed Conjugate Addition 10 I-3. Organometallic Reactions 13 I-3-1. 1,4-Addition by Utilizing Cuprate Reagents 13 I-3-2. Trialkylzincate Reagents 14 I-3-3. Applications of Trialkylzincate Reagent 15 I-4. Research Motif and Proposal 17 Chapter II. Results and Discussion 19 II-1. Addition of Nucleophiles to Sulfonyl Acetylene 19 II-1-1. Addition of Carbon Nucleophiles to Sulfonyl Acetylene 20 II-1-2. Addition of Heteroatom Nucleophiles to Sulfonyl Acetylene 29 II-1-3. Intramolecular nucleophile to form cyclopentanone through conjugate addition 34 II-1-4. Introduction of the Angular Methyl Group at C3 Carbon 37 II-1-5. Synthesis of the Substitute of Acetyl Group at C2 Carbon 42 II-2. Cyclobutane Formation by Exploiting Heteroatom-Directed Conjugate Addition 44 II-2-1. Studies of the Synthesis of anti Epoxy Vinylsilane 44 II-2-2. Studies of the Synthesis of anti Epoxy Vinylsulfone 49 II-2-3. Studies of the Cyclobutane Ring Formation 52 II-3. Conclusion 58 Chapter III. Experimental and References 60 III-1. General 60 III-2. Experimental Procedure 62 III-2-1. Synthesis of compound 97b 62 III-2-2. Synthesis of compound 98b 62 III-2-3. Synthesis of compound 99b 63 III-2-4. Synthesis of compound 91b 63 III-2-5. Synthesis of compound 91a 64 III-2-6. Products by Carbon Nucleophiles to the Acetylenic Sulfones 91a and 91b. 65 III-2-7. Products by Heteroatom Nucleophiles to the Acetylenic Sulfones 91a /91b. 71 III-2-8. Synthesis of compound 117. 76 III-2-9. Synthesis of compound 123 77 III-2-10. Synthesis of compound 125 77 III-2-11. Synthesis of compound 126 78 III-2-12. Synthesis of compound 119 79 III-2-13. Synthesis of compound 120 80 III-2-14. Synthesis of compound 132 81 III-2-15. Synthesis of compound 135 82 III-2-16. Synthesis of compound 83b 83 III-2-17. Synthesis of compound 139 84 III-2-18. Synthesis of compound 142 85 III-2-19. Synthesis of compound 143. 86 III-2-20. Synthesis of compound 144 87 III-2-21. Synthesis of compound 145 88 III-2-22. Synthesis of compound 146 89 III-2-23. Synthesis of compound 147 90 III-2-24. Synthesis of compound 152 91 III-2-25. Synthesis of compound 153 92 III-2-26. Hydrosilylation of 153 under Various Conditions 93 III-2-27. Synthesis of compound 160 96 III-2-28. Synthesis of compound 161 97 III-2-29. Synthesis of compound 162 98 III-2-30. Synthesis of compound 163 99 III-2-31. Synthesis of compound 167 100 III-2-32. 1,2-Addition of a-Epoxy Ketone 167 101 III-2-33. Hydrosilylation of b-Acetylenyl Adducts 168 103 III-2-34. Lithium acetylide addition to 169 and Cyclobutane Ring Formation 170 105 III-2-28. Synthesis of bis-PNB ester cyclobutane 175 107 III-3 References 109 Appendix (I) X-ray data and NMR spectra of compounds 114 Appendix (II) Publishcation 267 Figure Index Figure 1. Syn-adduct by chelation with oxygen atom. 1 Figure 2. Diastereoselectivity by - or -chelating manner. 3 Figure 3. Solanoeclepin A 7 Figure 4. Ate complexes. 14 Figure 5. Comparison of a-adduct 102a between known compounds 111a and 111b… 23 Figure 6. HMBC experiment of anti-methyl adduct 102a. 24 Figure 7. NOESY experiment of anti-methyl adduct 102a. 24 Figure 8. Products of Vinylmagnesium bromide to 91a and 91b. 25 Figure 9. HMBC experiment of 106. 26 Figure 10. HMBC experiment of 107. 27 Figure 11. HMBC experiment of 108. 28 Figure 12. HMBC experiment of 109. 28 Figure 13. ORTEP of the crystal structure of 112b and 113b. 31 Figure 14. ORTEP of the crystal structure of 117. 33 Figure 15. 1H and 13C-NMR spectra of cyclopentanone 120. 37 Figure 16. 1H and 13C-NMR spectra of allene 139. 41 Figure 17. 1H and 13C-NMR spectra of allene 147 and 151. 46 Figure 18. ORTEP of the crystal structure of 152. 46 Figure 19. 1H-NMR spectra of 154, 155 and 156. 48 Figure 20. ORTEP of the crystal structure of 163. 50 Figure 21. ORTEP of the crystal structure of 169 and 173. 54 Figure 22. HMBC experiment of cyclobutene 170. 55 Figure 24. ORTEP of the crystal structure of 175 56 Table Index Table 1. syn-Adduct was inducted by Methyllithium chelating with -oxygen atom... 2 Table 2. anti-Adduct was inducted by Nucleophile chelating with -hydroxyl group.... 3 Table 3. Products by Carbon Nucleophiles to the Acetylenic Sulfones 91a and 91b. 22 Table 4. Chemical Shifts of Vinyl Proton 29 Table 5. Products by Heteroatom Nucleophiles to the Acetylenic Sulfones 91a /91b. 30 Table 6. Characteristic 1H-NMR spectra data of 147 and 151. 45 Table 7. Hydrosilylation of 153 was examined with various conditions. 47 Table 8. Characteristic 1H-NMR spectra data of 154, 155 and 156. 48 Table 9. Lithium acetylide addition to 169 and cyclobutane ring formation 170. 55

    1. Isobe, M.; Kitamura, M.; Goto, T. Tetrahedron Lett. 1979, 20, 3465-3468.
    2. Isobe, M.; Kitamura, M.; Goto, T. Chem. Lett. 1980, 331-334.
    3. Isobe, M. Perspectives in Org. Chem. of Sulfur, Ed. by Zwanenburg, B.; Klunder, A. J. H. “New Synthetic Methods Using Vinyl Sulfones---Developments in Heteroconjugate Addition” Studies in Organic Chemistry 1987, 28, 209-229.
    4. Jiang, Y.; Isobe, M. Tetrahedron 1996, 52, 2877-2892.
    5. (a) Isobe, M.; Kitamura, M.; Goto, T. Tetrahedron Lett. 1980, 21, 4727-4730.; (b) Isobe, M.; Ichikawa, Y.; Funabashi, Y.; Mio, S.; Goto, T. Tetrahedron 1986, 42, 2863-2872.; (c) Ichikawa, Y.; Isobe, M.; Masaki, H.; Kawai, T.; Goto, T. Tetrahedron 1987, 43, 4759-4766.
    6. Tsuboi, K.; Ichikawa, Y.; Isobe, M. Synlett 1997, 713-715.
    7. Jiang, Y.; Ichikawa Y.; Isobe, M. Synlett 1995, 285-288.
    8. (a) Hamajima, A.; Isobe, M. Angew. Chem. Int. Ed. 2009, 48, 2941-2945.; (b) Hamajima, A.; Isobe, M. Org. Lett. 2006, 8, 1205-1208.; (c) Baba, T.; Huang, G.; Isobe, M. Tetrahedron 2003, 59, 6851-6872.; (d) Liu, T.-Z.; Kirschbaum, B.; Isobe, M. Synlett 2000, 587-590.; (e) Liu, T.-Z.; Li,J.-M.; Isobe, M. Tetrahedron 2000, 56, 10209-10219.; (f) Adachi, M.; Yamauchi, E.; Komada, T.; Isobe, M. Synlett 2000, 266-268.; (g) Liu,T.-Z.; Isobe, M. Tetrahedron 2000, 56, 5391-5404.
    9. Mulder, J. G.; Diepenhorst, P.; Brüggemann-Rotgans, I. E. M. Chem. Abstr. 1993, 118, 185844.
    10. Schenk, H.; Driessen, R. A. J.; de Gelder, R.; Goubitz, K.; Nieboer, H.; Brüggemann-Rotgans, I. E. M.; Diepenhorst, P. Croat. Chem. Acta 1999, 72, 593-606.
    11. (a) Benningshof, J. C. J.; Blaauw, R. H.; van Ginkel, A. E.; Rutjes, F. P. J. T.;
    Fraanje, J.; Goubitz, K.; Schenk, H.; Hiemstra, H. Chem. Commun. 2000, 1465-1466.; (b) Hue, B. T. B.; Dijkink, J.; Kuiper, S.; van Schaik, S.; van Maarseveen, J. H.; Hiemstra, H. Eur. J. Org. Chem. 2006, 127-137.; (c) Benningshof, J. C. J.; Blaauw, R. H.; van Ginkel, A. E.; van Maarseveen, J. H.; Rutjes, F. P. J. T.; Hiemstra, H. J. Chem. Soc., Perkin Trans. 1 2002, 1693-1700.
    12. Tanino, K.; Takahashi, M.; Tomata, Y.; Tokura, H.; Uehara, T.; Miyashita, M. Nat. Chem. 2011, 3, 484-488.
    13. (a) Brière, J.-F.; Blaauw, R. H.; Benningshof, J. C. J.; van Ginkel, A. E.; van Maarseveen, J. H.; Hiemstra, H. Eur. J. Org. Chem. 2001, 2371-2377.; (b) Lutteke, G.; Kleinnijenhuis, R. A.; Jacobs, I.; Wrigstedt, P. J.; Correia, A. C. A.; Nieuwenhuizen, R.; Buu Hue, B. T.; Goubitz, K.; Peschar, R.; van Maarseveen, J. H.; Hiemstra, H. Eur. J. Org. Chem. 2011, 3146-3155.
    14. Blaauw, R. H.; Brière, J.-F.; de Jong, R.; Benningshof, J. C. J.; van Ginkel, A. E.; Fraanje, J.; Goubitz, K.; Schenk, H.; Rutjes, F. P. J. T.; Hiemstra, H., J. Org. Chem. 2001, 66, 233-242.
    15. Stork, G.; Cohen, J. F. J. Am. Chem. Soc. 1974, 96, 5270-5272.
    16. Komada, T.; Adachi, M.; Nishikawa, T. Chem. Lett. 2012, 41, 287-289.
    17. Adachi, M.; Yamauchi, E.; Komada, T.; Isobe, M. Synlett 2009, 7, 1157-1161.
    18. Isobe, M.; Niyomchon, S.; Cheng, C.-Y.; Hasakunpaisarn, A. Tetrahedron Lett. 2011, 52, 1847-1850.
    19. Tsao, K.-W.; Isobe, M. Org. Lett. 2010, 12, 5338-5341.
    20. Kharasch, M. S.; Tawney, P. O. J. Am. Chem. Soc. 1941, 63, 2308-2316.
    21. Breit, B.; Schmidt, Y. Chem. Rev. 2008, 108, 2928-2951.
    22. Uchiyama, M.; Kameda, M.; Mishima, O.; Yokoyama, N.; Koike, M.; Kondo,
    Y.; Sakamoto, T. J. Am. Chem. Soc. 1998, 120, 4934-4946.
    23. Isobe, M.; Kondo, S.; Nagasawa, N.; Goto, T. Chem. Lett. 1977, 679-682.
    24. (a) Kondo, Y.; Takazawa, N.; Yamazaki, C.; Sakamoto, T. J. Org. Chem. 1994, 59, 4717-4718. (b) Kondo, Y.; Matsudaira, T.; Sato, J.; Murata, N.; Sakamoto, T. Angew. Chem., Int. Ed. Engl. 1996, 35, 736-738. (c) Kondo, Y.; Fujinami, M.; Uchiyama, M.; Sakamoto, T. J. Chem. Soc., Perkin Trans. 1 1997, 799-800.
    25. (a) Harada, T.; Katsuhira, T.; Hattori, K.; Oku, A. J. Org. Chem. 1993, 58, 2958-2965. (b) Harada, T.; Katsuhira, T.; Hara, D.; Kotani, Y.; Maejima, K.; Kaji, R.; Oku, A. J. Org. Chem. 1993, 58, 4897-4907.
    26. Uchiyama, M.; Furumoto, S.; Saito, M.; Kondo, Y.; Sakamoto, T. J. Am. Chem. Soc. 1997, 119, 11425-11433.
    27. Hatano, M.; Suzuki, S.; Ishihara, K. J. Am. Chem. Soc. 2006, 128, 9998-9999.
    28. Equey, O.; Vrancken, E.; Alexakis, A. Eur. J. Org. Chem. 2004, 2151-2159.
    29. Dieter, R. K.; Guo, F. J. Org. Chem. 2009, 74, 3843-3848.
    30. Isobe, M.; Chiang, C-T., Tsao, K.-W.; Cheng, C.-Y.; Bruening,R. Eur. J. Org.
    Chem. 2012, 2109-2113.
    31. 江景得 (Chiang, C.-T.) 國立清華大學碩士論文 2011.
    32. Kitamura, M.; Isobe, M.; Ichikawa, Y.; Goto, T. J. Am. Chem. Soc. 1984, 106,
    3252-3257.
    33. Isobe, M.; Kitamura, M.; Goto, T. J. Am. Chem. Soc. 1982, 104, 4997-4999.
    34. Isobe, M.; Ichikawa, Y.; Bai, D.; Masaki, H.; Goto, T. Tetrahedron 1987, 43, 4767-4776.
    35. Isobe, M.; Funabashi, Y.; Ichikawa, Y.; Mio, S.; Goto, T. Tetrahedron Lett. 1984, 25, 2021-2024.
    36. (a) Isobe, M.; Kitamura, M.; Goto, T. Tetrahedron Lett. 1981, 22, 239-242.; (b)
    Isobe, M.; Ichikawa, Y.; Kitamura, M.; Goto, T. Chem. Lett. 1981, 457-460.
    37. (a) Trost, B. M.; Chan, C.; Ruehter, G. J. Am. Chem. Soc. 1987, 109, 3486-3487.; (b) Trost, B. M.; Sorum, M. T.; Chan, C.; Ruehter, G. J. Am. Chem. Soc. 1997,
    119, 698-708.; (c) Back, T. G. Tetrahedron 2001, 57, 5263-5301.
    38. (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467-4470.; (b) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874-922.
    39. Dabdoub, M. J.; Dabdoub, V. B.; Lenardão, E. J. Tetrahedron Lett. 2001, 42, 1807-1809.
    40. (a) Hari, Y.; Kondo, R.; Date, K.; Aoyama, T. Tetrahedron 1987, 65, 8708- 8713.; (b) Protti, S.; Fagnoni, M.; Albini, A. Angew. Chem. Int. Ed. 2005, 44, 5675-5678.;(c) Guo, H.; Ma, S. Synthesis 2007, 2731-2745.
    41. Reeves, D. C.; Rodriguez, S.; Lee, H.; Haddad, N.; Krishnamurthy, D.;
    Senanayake, C. H. Tetrahedron Lett. 2009, 50, 2870-2873.
    42. Lee, J. W.; Lee, C.-W.; Jung, J. H.; Oh, D. Y. Synth. Commun. 2000, 30, 279-283.
    43. Truce, W. E.; Brad, D. G. J. Org. Chem. 1966, 31, 3543-3550.
    44. Marcune, B. F.; Karady, S.; Reider, P. J.; Miller, R. A.; Biba, M.; DiMichele, L.;
    Reamer, R. A.. J. Org. Chem. 2003, 68 , 8088-8091.
    45. (a) Dessy, R. E.; Kandil, S. A. J. Org. Chem. 1965, 30, 3857-3860. (b) Gilmore, K.; Alabugin, I. V. Chem. Rev. 2011, 111, 6513-6556.
    46. Bernasconi, S.; Gariboldi, P.; Jommi, G.; Sisti, M. Tetrahedron Lett. 1980, 21,
    2337-2340.
    47. Henbest, H. B.; Wilson, R. A. L. J. Chem. Soc. 1957, 1958-1965.
    48. (a) Isobe, M.; Nishizawa, R.; Nishikawa, T.; Yoza, K. Tetrahedron Lett. 1999, 40, 6927-6932.; (b) Huang, G.; Isobe, M. Tetrahedron 2001, 57 , 10241-10246.; (c) Kira, K.; Tanda, H.; Hamajima, A.; Baba, T.; Takai, S.; Isobe, M. Tetrahedron 2002, 58, 6485-6492.; (d) Tojo, S.; Isobe, M. Tetrahedron Lett. 2005, 46, 381-384.
    49. Brenstrum, T.; Clattenburg, J.; Britten, J.; Zavorine, S.; Dyck, J.; Robertson, A. J.; McNulty, J.; Capretta, A. Org. Lett. 2005, 8, 103-105.
    50. Chang, H.-K.; Liao, Y.-C.; Liu, R.-S. J. Org. Chem. 2007, 72, 8139-8141.
    51. Manarin, F. v.; Roehrs, J. A.; Gay, R. M.; Brandão, R.; Menezes, P. H.; Nogueira, C. W.; Zeni, G. J. Org. Chem. 2009, 74, 2153-2162.
    52. (a) Ma, Y.; Song, C.; Jiang, W.; Wu, Q.; Wang, Y.; Liu, X.; Andrus, M. B. Org. Lett. 2003, 5, 3317-319. (b) Shafiee, A.; Toghraie, S.; Aria, F.; Mortezaei-Zandjani, G. J. Heterocycl. Chem. 1982, 19, 1305-1308.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE