簡易檢索 / 詳目顯示

研究生: 鄭碩方
Jen, Shuo-Fang
論文名稱: 製備銅催化化學氣相沉積石墨烯與其氨氣摻雜之奈米帶電性研究
Cu-catalyst graphene synthesis by chemical vapor deposition and its electrical properties of ammonia-doped graphene nanoribbons
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 李奎毅
鄭舜仁
邱博文
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 203
中文關鍵詞: 石墨烯化學氣相沉積銅催化石墨烯元件摻雜石墨烯石墨烯奈米帶
外文關鍵詞: graphene, chemical vapor deposition, copper catalyst, graphene devices, doping graphene, graphene nanoribbon
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從發現可以在銅觸媒表面上成長石墨烯後,有效成長均勻大面積的石墨烯便成為相當重要的主題。本篇論文中,我們成功使用常壓化學氣相沉積與低壓化學氣相沉積兩種不同機制分別在銅塊材及銅薄膜催化劑上沉積石墨烯,並探討成長溫度、成長時間、退火時間、反應氣體流量多種成長條件對於成長石墨烯的影響,並以拉曼光譜、掃描式電子顯微鏡、穿透式電子顯微鏡分析石墨烯,探討其成長機制。我們所成長出的石墨烯光穿透率至少大於90%,以拉曼確認為單層石墨烯的試片光穿透率高達97%左右,量測到的片電阻約為1 kohm/square,我們也探討應力對石墨烯導電的影響,各結果分別都驗證了我們成長的結果相當優異。

    我們探討摻雜石墨烯奈米帶的電子傳輸特性。首先,成功出製作摻雜後石墨烯奈米帶的元件,探討摻雜對於電晶體電性的影響。另外,將元件置入變溫系統中,探討溫度變化對於電子在摻雜石墨烯奈米帶的傳輸機制,證實石墨烯因為摻雜及圖紋化成功打開能隙,Energy gap約為3.14 meV,在低溫環境下主要傳輸機制將由熱激發載子轉換成變程跳躍傳導,並且觀察到如subband的現象及量子震盪。


    論文摘要 3 致謝 5 目錄 9 1 緒論 15 1.1 動機 15 1.1.1 以矽材料為主的半導體科技 15 1.1.2 目前半導體技術的發展侷限 17 1.2 碳家族簡介 20 1.2.1 碳家族合成與製備 21 1.2.2 碳家族的物理特性及元件應用 22 1.2.3 碳家族的發展侷限 26 1.3 低維度材料的未來展望 27 1.4 論文結構 28 2 石墨烯的基礎物性 29 2.1 石墨晶體結構 30 2.1.1 石墨烯 30 2.1.2 雙層石墨與多層石墨 32 2.2 石墨烯的電子能帶 33 2.3 石墨烯的聲子能帶 36 2.4 機械熱光電特性 37 2.5 石墨烯的製備方法 39 2.5.1 剝離石墨法 39 2.5.2 氧化還原法 41 2.5.3 熱裂解成長於碳化矽上 42 2.5.4 化學氣相沈積法 43 2.6 石墨層數之判定 49 2.6.1 光學分辨 49 2.6.2 拉曼光譜儀 50 2.6.3 原子力顯微鏡 50 2.6.4 掃描式穿隧電子顯微鏡 51 2.6.6 穿透式電子顯微鏡 51 2.7 目前單層石墨的發展難題 52 3 拉曼光譜分析 55 3.1 拉曼效應 56 3.1.1 拉曼散射基本原理 56 3.1.2 共振拉曼散射 58 3.1.3 拉曼光譜之數學描述 60 3.2 拉曼光譜在石墨檢測之應用 61 3.2.1 石墨烯中的一階及二階共振拉曼散射 61 3.2.2 石墨系統中不同層數及堆疊方式對拉曼散射的影響 64 3.2.3 從共振拉曼探討電子與聲子 66 3.2.4 聲子與電子之間的交互作用 69 3.2.5 石墨烯及石墨邊緣的拉曼光譜 71 3.2.6 石墨烯奈米帶的拉曼光譜 73 4 化學氣相沉積 77 4.1 薄膜沉積 77 4.2 化學氣相沉積反應機制 78 4.2.1 常壓化學氣相沉積 83 4.2.2 低壓化學氣相沉積 84 4.2.3 電漿輔助化學氣相沉積 86 4.3 利用化學氣相沉積石墨烯之機制 86 4.3.1 在銅上成長石墨烯 86 4.3.2 銅基板的前處理 88 4.3.3 表面催化處理 89 4.4 建構石墨設備 90 4.4.1 爐管以及反應腔體 90 4.4.2 反應氣體以及管線 90 4.4.3 氣體流量控制 91 4.4.4 溫度控制 91 4.4.5 試片載台 92 4.4.6 完成建構成長設備 92 5 常壓化學氣相沉積成長石墨烯 95 5.1 催化劑的製備 95 5.1.1 催化劑的選擇 95 5.1.2 表面處理 97 5.1.3 蝕刻轉移製程 98 5.2 塊材催化劑之實驗結果 101 5.2.1 初步成長參數之測試 101 5.2.2 成長溫度之測試 102 5.2.3 退火時間之測試 106 5.2.4 成長時間之測試 107 5.2.5 反應氣體流量之測試 109 5.3 薄膜催化劑之實驗結果 110 5.3.1 初步成長參數之測試 111 5.3.2 反應氣體流量之測試 113 5.3.3 升降溫曲線之測試 114 5.3.4 直接成長於氧化矽基板之初步測試 120 6 低壓化學氣相沉積成長石墨烯 123 6.1 催化劑的製備 123 6.2 塊材催化劑之實驗結果 124 6.2.1 初步成長參數之測試 124 6.2.2 反應氣體流量之測試 126 6.2.3 成長時間之測試 131 6.2.4 退火時間之測試 133 6.2.5 成長溫度之測試 135 6.2.6 載氣氣體使用之差異 136 6.3 薄膜催化劑之初步實驗結果 138 7 探討銅系統成長石墨烯之機制 143 7.1 前處理對於表面之影響 143 7.1.1 醋酸對於表面之影響 143 7.1.2 退火時間對於表面之影響 144 7.2 掃描式電子顯微鏡之影像 145 7.3 成長溫度之影響 149 7.4 反應氣體之比例 150 7.5 不同降溫速率之影響 151 7.6 比較兩種化學氣相沉積之機制 152 7.7 穿透式電子顯微鏡之影像 153 8 石墨烯的基本特性及元件應用 157 8.1 透光率 157 8.2 導電性 158 8.3 合作及應用 161 8.3.1 CNT graphene 161 8.3.2 ZnO/graphene 異質結構 162 8.3.3 ReRAM 164 9 石墨烯元件製備 167 9.1 元件前端製程 168 9.1.1 石墨烯的轉移 168 9.2 製作石墨烯奈米帶元件 169 9.2.1 光學微影 169 9.2.2 電子術微影 169 9.3 反應式離子蝕刻技術 171 9.3.1 氧氣電漿 172 9.4 熱金屬蒸鍍 173 9.4.1 高溫退火 174 9.5 製作摻雜石墨烯奈米帶元件 174 9.5.1 氨氣摻雜方式 174 9.5.2 元件流程 176 9.6 金屬導線連接與量測系統 177 10 摻雜石墨烯奈米帶元件量測結果與分析 179 10.1 摻雜石墨烯拉曼光譜分析 179 10.2 電流電壓之基本電性 180 10.3 閘極控制電流變化之電性測量 182 10.4 摻雜石墨烯奈米帶之導電機制 184 11 結論與未來展望 191 11.1 實驗結果與總結 191 11.2 未來展望 191 參考文獻 195

    [1] Bardeen, J. & Brattain, W. H. "The transistor, a semi-conductor triode". Phys. Rev. 74, 230{231 (1948).
    [2] Intel. "moore's law". http://www.legitreviews.com/article/1082/1/ .
    [3] Intel. "roadmap". http://techztalk.com/techwebsite/05-15-10-intel-details-10-year-processor-development-plan .
    [4] Terrones, M. et al. "Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications". Nano Today 5, 351{372 (2010).
    [5] Iijima, S. & Ichihashi, T. "Single-shell carbon nanotube of 1-nm diameter". Nature 363, 603{605 (1993).
    [6] Novoselov, K. S. et al. "Electric field effect in atomically thin carbon films". Science 306, 666{669 (2004).
    [7] Dresselhaus, M. S. & Araujo, P. T. "Perspectives on the 2010 Nobel Prize in Physics for Graphene". ACS Nano 4, 6297{6302 (2010).
    [8] Kratschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. "Solid C-60 - a new form of carbon". Nature 347, 354{358 (1990).
    [9] Kroto, H. W., Heath, J. R., Obrien, S. C., Curl, R. F. & Smalley, R. E. "C-60 - buckminsterfullerene". Nature 318, 162{163 (1985).
    [10] Sun, L. F. et al. "Growth of straight nanotubes with a cobalt-nickel catalyst by chemical vapor deposition". Appl. Phys. Lett. 74, 644{646 (1999).
    [11] Kim, K. S. et al. "Large-scale pattern growth of graphene films for stretchable transparent electrodes". Nature 457, 706{710 (2009).
    [12] Li, X. et al. "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils". Science 324, 1312{1314 (2009).
    [13] Haddon, R. C. et al. "Conducting films of C60 and C70 by alkali-metal doping". Nature 350, 320{322 (1991).
    [14] Graham, A. P. et al. "Carbon nanotubes for microelectronics?". Small 1, 382{390 (2005).
    [15] Bolotin, K. I. et al. "Ultrahigh electron mobility in suspended graphene". Solid State Commun. 146, 351{355 (2008).
    [16] Balandin, A. A. et al. "Superior thermal conductivity of single-layer graphene". Nano Lett. 8, 902{907 (2008).
    [17] Bae, S. et al. "Roll-to-roll production of 30-inch graphene films for transparent electrodes". Nature Nanotech. 5, 574{578 (2010).
    [18] Lin, Y. M. et al. "100-GHz Transistors fromWafer-Scale Epitaxial Graphene". Science 327, 662 (2010).
    [19] Wang, H., Nezich, D., Kong, J. & Palacios, T. "Graphene frequency multi pliers". IEEE Electron Device Lett. 30, 547{549 (2009).
    [20] Lin, Y.-M. & Avouris, P. "Strong suppression of electrical noise in bilayer graphene nanodevices". Nano Lett. 8, 2119{2125 (2008).
    [21] Xu, C., Li, H. & Banerjee, K. "Modeling, analysis, and design of graphene nano-ribbon interconnects". IEEE Trans. Electron Devices 56, 1567{1578 (2009).
    [22] Mermin, N. D. "crystalline order in two dimensions". Phys. Rev. 176, 250{254 (1968).
    [23] Geim, A. K. "Graphene: Status and Prospects". Science 324, 1530{1534 (2009).
    [24] Schwierz, F. "Graphene transistors". Nature Nanotech. 5, 487{496 (2010).
    [25] Abergel, D. S. L., Apalkov, V., Berashevich, J., Ziegler, K. & Chakraborty, T. "Properties of graphene: a theoretical perspective". Adv. Phys. 59, 261{482 (2010).
    [26] Lu, C.-C. "controlled growth of single layer and double layer graphene sheets on patterned silicon wafers". National Tsing Hua University MS. thesis (2009).
    [27] Latil, S. & Henrard, L. "Charge carriers in few-layer graphene films". Phys. Rev. Lett. 97 (2006).
    [28] Avouris, P. "Graphene: Electronic and Photonic Properties and Devices". Nano Lett. 10, 4285{4294 (2010).
    [29] Wallace, P. R. "the band theory of graphite". Phys. Rev. 71, 622{634 (1947).
    [30] Lazzeri, M., Attaccalite, C., Wirtz, L. & Mauri, F. "Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite". Phys. Rev. B 78 (2008).
    [31] Saito, R. et al. "Probing phonon dispersion relations of graphite by double resonance Raman scattering". Phys. Rev. Lett. 88 (2002).
    [32] Maultzsch, J., Reich, S., Schlecht, U. & Thomsen, C. "High-energy phonon branches of an individual metallic carbon nanotube". Phys. Rev. Lett. 91 (2003).
    [33] Yao, Z., Kane, C. & Dekker, C. "High-field electrical transport in single-wall carbon nanotubes". Phys. Rev. Lett. 84, 2941{2944 (2000).
    [34] Lee, C., Wei, X., Kysar, J. W. & Hone, J. "Measurement of the elastic properties and intrinsic strength of monolayer graphene". Science 321, 385{388 (2008).
    [35] Stankovich, S. et al. "Graphene-based composite materials". Nature 442, 282{286 (2006).
    [36] Cano-Marquez, A. G. et al. "Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes".Nano Lett. 9, 1527{1533 (2009).
    [37] Lu, X., Yu, M., Huang, H. & Ruoff, R. "Tailoring graphite with the goal of achieving single sheets". Nanotech. 10, 269{272 (1999). 6th Foresight Conference, SANTA CLARA, CALIFORNIA, NOV 12-15, 1998.
    [38] Liang, X. et al. "Roller-style electrostatic printing of prepatterned few-layer graphenes". Appl. Phys. Lett. 96 (2010).
    [39] Dresselhaus, M. & Dresselhaus, G. "Intercalation compounds of graphite". Adv. Phys. 51, 1{186 (2002).
    [40] Kosynkin, D. V. et al. "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons". Nature 458, 872{U5 (2009).
    [41] Cai, J. et al. "Atomically precise bottom-up fabrication of graphene nanoribbons". Nature 466, 470{473 (2010).
    [42] Berger, C. et al. "Electronic confinement and coherence in patterned epitaxial graphene". Science 312, 1191{1196 (2006).
    [43] Sprinkle, M. et al. "Scalable templated growth of graphene nanoribbons on SiC". Nature Nanotech. 5, 727{731 (2010).
    [44] Sutter, P. W., Flege, J.-I. & Sutter, E. A. "Epitaxial graphene on ruthenium". Nature Mater. 7, 406{411 (2008).
    [45] Abild-Pedersen, F., Norskov, J., Rostrup-Nielsen, J., Sehested, J. & Helveg,S. "Mechanisms for catalytic carbon nanofiber growth studied by ab initiodensity functional theory calculations". Phys. Rev. B 73 (2006).
    [46] Obraztsov, A. N., Obraztsova, E. A., Tyurnina, A. V. & Zolotukhin, A. A. "Chemical vapor deposition of thin graphite films of nanometer thickness". Carbon 45, 2017{2021 (2007).
    [47] Yu, Q. et al. "Graphene segregated on Ni surfaces and transferred to insulators". Appl. Phys. Lett. 93 (2008).
    [48] Reina, A. et al. "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition". Nano Lett. 9, 30{35 (2009).
    [49] Reina, A. et al. "Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces". Nano Res. 2, 509{516 (2009).
    [50] LEE, S. et al. "Heteroepotaxy of carbon on copper by high-temperature ion-implantation". Appl. Phys. Lett. 59, 785{787 (1991).
    [51] Lee, S., Lee, K. & Zhong, Z. "Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition". Nano Lett. 10, 4702 (2010).
    [52] Sun, Z. et al. "Growth of graphene from solid carbon sources". Nature 468, 549 (2010).
    [53] Blake, P. et al. "Making graphene visible". Appl. Phys. Lett. 91 (2007).
    [54] Nair, R. R. et al. "Fine structure constant defines visual transparency of graphene". Science 320, 1308 (2008).
    [55] Ferrari, A. C. et al. "Raman spectrum of graphene and graphene layers". Phys. Rev. Lett. 97 (2006).
    [56] Novoselov, K. et al. "Two-dimensional atomic crystals". Proc. Nat. Acad.
    Sci. 102, 10451{10453 (2005).
    [57] Stolyarova, E. et al. "High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface". Proc. Nat. Acad. Sci. 104, 9209{9212 (2007).
    [58] Suenaga, K. & Koshino, M. "Atom-by-atom spectroscopy at graphene edge". Nature 468, 1088{1090 (2010).
    [59] Majumdar, K., Murali, K. V. R. M., Bhat, N. & Lin, Y.-M. "External Bias Dependent Direct To Indirect Band Gap Transition in Graphene Nanoribbon". Nano Lett. 10, 2857{2862 (2010).
    [60] Ferraro, J. R. & Nakamoto, K. Introductory raman spectroscopy. Elsevier (2003).
    [61] Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. "Raman spectroscopy in graphene". Phys. Rep. 473, 51{87 (2009).
    [62] Pocsik, I., Hundhausen, M., Koos, M. & Ley, L. "Origin of the D peak in the Raman spectrum of microcrystalline graphite". J. Non-Cryst. Solids 227,
    1083{1086 (1998).
    [63] Matthews, M., Pimenta, M., Dresselhaus, G., Dresselhaus, M. & Endo, M. "Origin of dispersive effects of the Raman D band in carbon materials". Phys. Rev. B 59, R6585{R6588 (1999).
    [64] Malard, L. M. et al. "Probing the electronic structure of bilayer graphene by Raman scattering". Phys. Rev. B 76 (2007).
    [65] Mildred S. Dresselhaus, G. D. "group theory: Application to the physics of condensed matter". Springer (2008).
    [66] Cancado, L. G., Reina, A., Kong, J. & Dresselhaus, M. S. "Geometrical approach for the study of G ` band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite". Phys. Rev. B 77 (2008).
    [67] Cancado, L. et al. "Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite". Phys. Rev. B 66 (2002).
    [68] Cancado, L. G. et al. "Measuring the degree of stacking order in graphite by Raman spectroscopy". Carbon 46, 272{275 (2008).
    [69] Mafra, D. L. et al. "Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering". Phys. Rev. B 76 (2007).
    [70] Kohn, W. "Image of the fermi surface in the vibration spectrum of a metal". Phys. Rev. Lett. 2, 393{394 (1959).
    [71] Lazzeri, M. & Mauri, F. "Nonadiabatic Kohn anomaly in a doped graphene monolayer". Phys. Rev. Lett. 97 (2006).
    [72] Cancado, L., Pimenta, M., Neves, B., Dantas, M. & Jorio. "Influence of the atomic structure on the Raman spectra of graphite edges". Phys. Rev. Lett. 93 (2004).
    [73] Cancado, L. et al. "Anisotropy of the Raman spectra of nanographite ribbons". Phys. Rev. Lett. 93 (2004).
    [74] James D. Plummer, M. D. & Griffin, P. B. "silicon vlsi technology - fundamentals, practice and modeling". Pearson Education International (2000).
    [75] Constant, L., Speisser, C. & LeNormand, F. "HFCVD diamond growth on Cu(111). Evidence for carbon phase transformations by in situ AES and XPS". Surface Sceince 387, 28{43 (1997).
    [76] Zhou, W. et al. "Copper catalyzing growth of single-walled carbon nanotubes on substrates". Nano Lett. 6, 2987{2990 (2006).
    [77] Mattevi, C., Kim, H. & Chhowalla, M. "A review of chemical vapour deposition of graphene on copper". J. Mater. Chem. 21, 3324{3334 (2011).
    [78] Lopez, G. & Mittemeijer, E. "The solubility of C in solid Cu". Scripta Materialia 51, 1{5 (2004).
    [79] Li, X., Cai, W., Colombo, L. & Ruoff, R. S. "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling". Nano Lett. 9, 4268{4272 (2009).
    [80] Levendorf, M. P., Ruiz-Vargas, C. S., Garg, S. & Park, J. "Transfer-Free Batch Fabrication of Single Layer Graphene Transistors". Nano Lett. 9, 4479{4483
    (2009).
    [81] Gao, L. et al. "Effcient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition". Appl. Phys. Lett. 97 (2010).
    [82] Bhaviripudi, S., Jia, X., Dresselhaus, M. S. & Kong, J. "Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst". Nano Lett. 10, 4128{4133 (2010).
    [83] Li, X. et al. "Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process". Nano Lett. 10, 4328{4334 (2010).
    [84] Das, A. et al. "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor". Nature Nanotech. 3, 210{215 (2008).
    [85] Farmer, D. B. et al. "Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices". Nano Lett. 9, 388{392 (2009).
    [86] Sols, F., Guinea, F. & Neto, A. H. C. "Coulomb blockade in graphene nanoribbons". Phys. Rev. Lett. 99 (2007).
    [87] Lherbier, A., Biel, B., Niquet, Y.-M. & Roche, S. "Transport length scales in
    disordered graphene-based materials: Strong localization regimes and dimensionality effects". Phys. Rev. Lett. 100 (2008).
    [88] Han, M. Y., Oezyilmaz, B., Zhang, Y. & Kim, P. "Energy band-gap engineering of graphene nanoribbons". Phys. Rev. Lett. 98 (2007).
    [89] Han, M. Y., Brant, J. C. & Kim, P. "Electron Transport in Disordered Graphene Nanoribbons". Phys. Rev. Lett. 104 (2010).
    [90] Chen, J.-H., Cullen, W. G., Jang, C., Fuhrer, M. S. & Williams, E. D. "Defect Scattering in Graphene". Phys. Rev. Lett. 102 (2009).
    [91] Shimizu, T. et al. "Large intrinsic energy bandgaps in annealed nanotube- derived graphene nanoribbons". Nature Nanotech. 6, 45{50 (2011).
    [92] Fang, T., Konar, A., Xing, H. & Jena, D. "Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering".
    Phys. Rev. B 78 (2008).
    [93] Lin, Y.-C., Lin, C.-Y. & Chiu, P.-W. "Controllable graphene N-doping with ammonia plasma". Appl. Phys. Lett. 96, 133110 (2010).
    [94] Wang, X. et al. "N-Doping of Graphene Through Electrothermal Reactions with Ammonia". Science 324, 768{771 (2009).
    [95] Lin, Y.-M., Perebeinos, V., Chen, Z. & Avouris, P. "Electrical observation of subband formation in graphene nanoribbons". Phys. Rev. B 78 (2008).
    [96] Ihnatsenka, S. & Kirczenow, G. "Conductance quantization in strongly disordered graphene ribbons". Phys. Rev. B 80 (2009).
    [97] Peres, N., Neto, A. & Guinea, F. Conductance quantization in mesoscopic graphene. Phys. Rev. B 73 (2006).
    [98] Bardarson, J. H., Titov, M. & Brouwer, P. W. "Electrostatic Confinement of Electrons in an Integrable Graphene Quantum Dot". Phys. Rev. Lett. 102
    (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE