研究生: |
簡鈴 Chien, Ling |
---|---|
論文名稱: |
粒線體療法可促進海馬迴神經細胞的再生 Mitochondrial therapy promotes regeneration of hippocampal neurons |
指導教授: |
陳令儀
Chen, Linyi |
口試委員: |
張壯榮
Chang, Chuang-Rung 林玉俊 Lin, Yu-Chun |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 中樞神經再生 、粒線體 |
外文關鍵詞: | Neuronal regeneration, Mitochondrial therapy |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中樞神經系統由於外在的抑制環境和內在本身極低的生長能力而難以再生,目前研究上還有許多問題有待克服。一般神經細胞有較高的能量需求,須要粒線體提供能量以支持其進行細胞活動。而粒線體會藉由融合和分裂來維持自身的功能,此粒線體動態變化可能為神經再生所必須。在本研究中,我們利用十八天大的大鼠胚胎分離出海馬迴神經細胞,觀察粒腺體動態變化在神經再生過程中所扮演的角色。再生過程中粒線體型態依據其長度分為三種類型並進行統計,結果顯示受傷會造成粒腺體分裂,在受傷處附近的細胞其粒腺體長度較短,而在受傷細胞中加入粒腺體分裂的抑制劑並不影響神經再生。又由於粒線體功能的缺失跟很多神經退化性疾病有關,因此我們假設粒線體療法能促進神經的再生。實驗顯示外加入新鮮分離出的粒腺體能夠進入細胞當中,並且大幅地促進再生,甚至還能回復受傷海馬迴細胞的膜電位。綜合以上結果,本研究點出粒腺體在神經再生過程中的重要性,並對受傷的中樞神經系統提出一個新穎的治療方式。
Due to the inhibitory extrinsic microenvironment and the reduced intrinsic growth capacity of neurons, neuronal regeneration of central nervous system remains to be a challenge to overcome. Neurons are highly energy-demanding and require mitochondria to support cellular activities including regeneration. Mitochondria undergo fusion/fission cycles to ensure proper functions of cells. The plasticity of mitochondrial dynamics is thus required for neuronal regeneration. In this study, we examined the role of mitochondrial dynamics during neuronal regeneration by using embryonic day 18 rat hippocampal neurons as our model. The dynamics of mitochondrial morphogenesis during regeneration was analyzed and was defined into three categories- fission, intermediate, and fusion type according to their length. Quantitative analysis showed that injury-induced mitochondrial fission were more prominently near the injury sites. Treating neurons with mitochondrial fission inhibitor, Mdivi-1, had no much effect on neuronal regeneration. Since mitochondrial dysfunctions are highly associated with neurodegenerative diseases, we thus hypothesized that mitochondrial therapy may potentially promote neuronal regeneration. Freshly isolated mitochondria were added to the injured hippocampal neurons and were internalized into cells. Our results showed that addition of freshly isolated mitochondria significantly increased neurite re-growth. Moreover, treatment of mitochondria restored membrane potential of injured hippocampal neurons. Together, findings from this thesis highlight the important role of mitochondria during regeneration of hippocampal neurons and provide a novel therapeutic prospect to the injured central nervous system.
Reference
1. Maas, A. I., Stocchetti, N., and Bullock, R. (2008) Moderate and severe traumatic brain injury in adults. The Lancet. Neurology 7, 728-741
2. Xiong, Y., Mahmood, A., and Chopp, M. (2013) Animal models of traumatic brain injury. Nature reviews. Neuroscience 14, 128-142
3. Taylor, C. A., Bell, J. M., Breiding, M. J., and Xu, L. (2017) Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths - United States, 2007 and 2013. Morbidity and mortality weekly report. Surveillance summaries 66, 1-16
4. Gaetz, M. (2004) The neurophysiology of brain injury. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 115, 4-18
5. Povlishock, J. T., and Christman, C. W. (1995) The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. Journal of neurotrauma 12, 555-564
6. Raghavendra Rao, V. L., Dhodda, V. K., Song, G., Bowen, K. K., and Dempsey, R. J. (2003) Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. Journal of neuroscience research 71, 208-219
7. Ziebell, J. M., and Morganti-Kossmann, M. C. (2010) Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 7, 22-30
8. Masel, B. E., and DeWitt, D. S. (2010) Traumatic brain injury: a disease process, not an event. Journal of neurotrauma 27, 1529-1540
9. Raghupathi, R. (2004) Cell death mechanisms following traumatic brain injury. Brain pathology 14, 215-222
10. Liu, K., Tedeschi, A., Park, K. K., and He, Z. (2011) Neuronal intrinsic mechanisms of axon regeneration. Annual review of neuroscience 34, 131-152
11. Filbin, M. T. (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nature reviews. Neuroscience 4, 703-713
12. Schwab, M. E. (2004) Nogo and axon regeneration. Current opinion in neurobiology 14, 118-124
13. Giger, R. J., Hollis, E. R., 2nd, and Tuszynski, M. H. (2010) Guidance molecules in axon regeneration. Cold Spring Harbor perspectives in biology 2, a001867
14. Yiu, G., and He, Z. (2006) Glial inhibition of CNS axon regeneration. Nature reviews. Neuroscience 7, 617-627
15. Sun, F., and He, Z. (2010) Neuronal intrinsic barriers for axon regeneration in the adult CNS. Current opinion in neurobiology 20, 510-518
16. Goldberg, J. L., Klassen, M. P., Hua, Y., and Barres, B. A. (2002) Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296, 1860-1864
17. Abe, N., and Cavalli, V. (2008) Nerve injury signaling. Current opinion in neurobiology 18, 276-283
18. Bomze, H. M., Bulsara, K. R., Iskandar, B. J., Caroni, P., and Skene, J. H. (2001) Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nature neuroscience 4, 38-43
19. Deng, K., He, H., Qiu, J., Lorber, B., Bryson, J. B., and Filbin, M. T. (2009) Increased synthesis of spermidine as a result of upregulation of arginase I promotes axonal regeneration in culture and in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 9545-9552
20. Mar, F. M., Bonni, A., and Sousa, M. M. (2014) Cell intrinsic control of axon regeneration. EMBO reports 15, 254-263
21. Bareyre, F. M., Garzorz, N., Lang, C., Misgeld, T., Buning, H., and Kerschensteiner, M. (2011) In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proceedings of the National Academy of Sciences of the United States of America 108, 6282-6287
22. Osellame, L. D., Blacker, T. S., and Duchen, M. R. (2012) Cellular and molecular mechanisms of mitochondrial function. Best practice & research. Clinical endocrinology & metabolism 26, 711-723
23. Kann, O., and Kovacs, R. (2007) Mitochondria and neuronal activity. American journal of physiology. Cell physiology 292, C641-657
24. Taylor, R. W., and Turnbull, D. M. (2005) Mitochondrial DNA mutations in human disease. Nature reviews. Genetics 6, 389-402
25. Yu-Wai-Man, P., Turnbull, D. M., and Chinnery, P. F. (2002) Leber hereditary optic neuropathy. Journal of medical genetics 39, 162-169
26. Westermann, B. (2010) Mitochondrial fusion and fission in cell life and death. Nature reviews. Molecular cell biology 11, 872-884
27. Ni, H. M., Williams, J. A., and Ding, W. X. (2015) Mitochondrial dynamics and mitochondrial quality control. Redox biology 4, 6-13
28. Detmer, S. A., and Chan, D. C. (2007) Functions and dysfunctions of mitochondrial dynamics. Nature reviews. Molecular cell biology 8, 870-879
29. Rojo, M., Legros, F., Chateau, D., and Lombes, A. (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. Journal of cell science 115, 1663-1674
30. Cipolat, S., Martins de Brito, O., Dal Zilio, B., and Scorrano, L. (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proceedings of the National Academy of Sciences of the United States of America 101, 15927-15932
31. Chen, H., Detmer, S. A., Ewald, A. J., Griffin, E. E., Fraser, S. E., and Chan, D. C. (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of cell biology 160, 189-200
32. Zuchner, S., Mersiyanova, I. V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E. L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., Parman, Y., Evgrafov, O., Jonghe, P. D., Takahashi, Y., Tsuji, S., Pericak-Vance, M. A., Quattrone, A., Battaloglu, E., Polyakov, A. V., Timmerman, V., Schroder, J. M., and Vance, J. M. (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature genetics 36, 449-451
33. Delettre, C., Lenaers, G., Griffoin, J. M., Gigarel, N., Lorenzo, C., Belenguer, P., Pelloquin, L., Grosgeorge, J., Turc-Carel, C., Perret, E., Astarie-Dequeker, C., Lasquellec, L., Arnaud, B., Ducommun, B., Kaplan, J., and Hamel, C. P. (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nature genetics 26, 207-210
34. Smirnova, E., Griparic, L., Shurland, D. L., and van der Bliek, A. M. (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Molecular biology of the cell 12, 2245-2256
35. Wakabayashi, J., Zhang, Z., Wakabayashi, N., Tamura, Y., Fukaya, M., Kensler, T. W., Iijima, M., and Sesaki, H. (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. The Journal of cell biology 186, 805-816
36. Knott, A. B., Perkins, G., Schwarzenbacher, R., and Bossy-Wetzel, E. (2008) Mitochondrial fragmentation in neurodegeneration. Nature reviews. Neuroscience 9, 505-518
37. Gao, J., Wang, L., Liu, J., Xie, F., Su, B., and Wang, X. (2017) Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases. Antioxidants 6
38. Sheng, Z. H., and Cai, Q. (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nature reviews. Neuroscience 13, 77-93
39. Miller, K. E., and Sheetz, M. P. (2004) Axonal mitochondrial transport and potential are correlated. Journal of cell science 117, 2791-2804
40. Chang, D. T., Honick, A. S., and Reynolds, I. J. (2006) Mitochondrial trafficking to synapses in cultured primary cortical neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 7035-7045
41. Li, Z., Okamoto, K., Hayashi, Y., and Sheng, M. (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873-887
42. Itoh, K., Nakamura, K., Iijima, M., and Sesaki, H. (2013) Mitochondrial dynamics in neurodegeneration. Trends in cell biology 23, 64-71
43. Huang, Y., and Mucke, L. (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148, 1204-1222
44. Manczak, M., and Reddy, P. H. (2012) Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer's disease neurons: implications for mitochondrial dysfunction and neuronal damage. Human molecular genetics 21, 2538-2547
45. Kandimalla, R., and Reddy, P. H. (2016) Multiple faces of dynamin-related protein 1 and its role in Alzheimer's disease pathogenesis. Biochimica et biophysica acta 1862, 814-828
46. Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N., and Braak, E. (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiology of aging 24, 197-211
47. Poole, A. C., Thomas, R. E., Andrews, L. A., McBride, H. M., Whitworth, A. J., and Pallanck, L. J. (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proceedings of the National Academy of Sciences of the United States of America 105, 1638-1643
48. Yang, Y., Ouyang, Y., Yang, L., Beal, M. F., McQuibban, A., Vogel, H., and Lu, B. (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proceedings of the National Academy of Sciences of the United States of America 105, 7070-7075
49. Scarffe, L. A., Stevens, D. A., Dawson, V. L., and Dawson, T. M. (2014) Parkin and PINK1: much more than mitophagy. Trends in neurosciences 37, 315-324
50. Sofroniew, M. V. (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends in neurosciences 32, 638-647
51. Motori, E., Puyal, J., Toni, N., Ghanem, A., Angeloni, C., Malaguti, M., Cantelli-Forti, G., Berninger, B., Conzelmann, K. K., Gotz, M., Winklhofer, K. F., Hrelia, S., and Bergami, M. (2013) Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance. Cell metabolism 18, 844-859
52. Chien, L., Chen, W. K., Liu, S. T., Chang, C. R., Kao, M. C., Chen, K. W., Chiu, S. C., Hsu, M. L., Hsiang, I. C., Chen, Y. J., and Chen, L. (2015) Low-dose ionizing radiation induces mitochondrial fusion and increases expression of mitochondrial complexes I and III in hippocampal neurons. Oncotarget 6, 30628-30639
53. Hsu, Y. C., Wu, Y. T., Yu, T. H., and Wei, Y. H. (2016) Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer. Seminars in cell & developmental biology 52, 119-131
54. Plotnikov, E. Y., Babenko, V. A., Silachev, D. N., Zorova, L. D., Khryapenkova, T. G., Savchenko, E. S., Pevzner, I. B., and Zorov, D. B. (2015) Intercellular Transfer of Mitochondria. Biochemistry. Biokhimiia 80, 542-548
55. Spees, J. L., Olson, S. D., Whitney, M. J., and Prockop, D. J. (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proceedings of the National Academy of Sciences of the United States of America 103, 1283-1288
56. Lin, H. Y., Liou, C. W., Chen, S. D., Hsu, T. Y., Chuang, J. H., Wang, P. W., Huang, S. T., Tiao, M. M., Chen, J. B., Lin, T. K., and Chuang, Y. C. (2015) Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion 22, 31-44
57. Li, X., Zhang, Y., Yeung, S. C., Liang, Y., Liang, X., Ding, Y., Ip, M. S., Tse, H. F., Mak, J. C., and Lian, Q. (2014) Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. American journal of respiratory cell and molecular biology 51, 455-465
58. Ahmad, T., Mukherjee, S., Pattnaik, B., Kumar, M., Singh, S., Kumar, M., Rehman, R., Tiwari, B. K., Jha, K. A., Barhanpurkar, A. P., Wani, M. R., Roy, S. S., Mabalirajan, U., Ghosh, B., and Agrawal, A. (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. The EMBO journal 33, 994-1010
59. Islam, M. N., Das, S. R., Emin, M. T., Wei, M., Sun, L., Westphalen, K., Rowlands, D. J., Quadri, S. K., Bhattacharya, S., and Bhattacharya, J. (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nature medicine 18, 759-765
60. Davis, C. H., Kim, K. Y., Bushong, E. A., Mills, E. A., Boassa, D., Shih, T., Kinebuchi, M., Phan, S., Zhou, Y., Bihlmeyer, N. A., Nguyen, J. V., Jin, Y., Ellisman, M. H., and Marsh-Armstrong, N. (2014) Transcellular degradation of axonal mitochondria. Proceedings of the National Academy of Sciences of the United States of America 111, 9633-9638
61. Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., Ji, X., and Lo, E. H. (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551-555
62. McCully, J. D., Levitsky, S., Del Nido, P. J., and Cowan, D. B. (2016) Mitochondrial transplantation for therapeutic use. Clinical and translational medicine 5, 16
63. Liu, C. S., Chang, J. C., Kuo, S. J., Liu, K. H., Lin, T. T., Cheng, W. L., and Chuang, S. F. (2014) Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. The international journal of biochemistry & cell biology 53, 141-146
64. McCully, J. D., Cowan, D. B., Pacak, C. A., Toumpoulis, I. K., Dayalan, H., and Levitsky, S. (2009) Injection of isolated mitochondria during early reperfusion for cardioprotection. American journal of physiology. Heart and circulatory physiology 296, H94-H105
65. Lin, H. C., Liu, S. Y., Lai, H. S., and Lai, I. R. (2013) Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats. Shock 39, 304-310
66. Masuzawa, A., Black, K. M., Pacak, C. A., Ericsson, M., Barnett, R. J., Drumm, C., Seth, P., Bloch, D. B., Levitsky, S., Cowan, D. B., and McCully, J. D. (2013) Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. American journal of physiology. Heart and circulatory physiology 304, H966-982
67. Kaza, A. K., Wamala, I., Friehs, I., Kuebler, J. D., Rathod, R. H., Berra, I., Ericsson, M., Yao, R., Thedsanamoorthy, J. K., Zurakowski, D., Levitsky, S., Del Nido, P. J., Cowan, D. B., and McCully, J. D. (2017) Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. The Journal of thoracic and cardiovascular surgery 153, 934-943
68. Katrangi, E., D'Souza, G., Boddapati, S. V., Kulawiec, M., Singh, K. K., Bigger, B., and Weissig, V. (2007) Xenogenic transfer of isolated murine mitochondria into human rho0 cells can improve respiratory function. Rejuvenation research 10, 561-570
69. Chang, J. C., Wu, S. L., Liu, K. H., Chen, Y. H., Chuang, C. S., Cheng, F. C., Su, H. L., Wei, Y. H., Kuo, S. J., and Liu, C. S. (2016) Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Translational research : the journal of laboratory and clinical medicine 170, 40-56 e43
70. Morrison, B., 3rd, Elkin, B. S., Dolle, J. P., and Yarmush, M. L. (2011) In vitro models of traumatic brain injury. Annual review of biomedical engineering 13, 91-126
71. Fairless, R., Beck, A., Kravchenko, M., Williams, S. K., Wissenbach, U., Diem, R., and Cavalie, A. (2013) Membrane potential measurements of isolated neurons using a voltage-sensitive dye. PloS one 8, e58260
72. Han, S. M., Baig, H. S., and Hammarlund, M. (2016) Mitochondria Localize to Injured Axons to Support Regeneration. Neuron 92, 1308-1323
73. Fischer, T. D., Hylin, M. J., Zhao, J., Moore, A. N., Waxham, M. N., and Dash, P. K. (2016) Altered Mitochondrial Dynamics and TBI Pathophysiology. Frontiers in systems neuroscience 10, 29
74. Youle, R. J., and Narendra, D. P. (2011) Mechanisms of mitophagy. Nature reviews. Molecular cell biology 12, 9-14
75. Wu, Q., Xia, S. X., Li, Q. Q., Gao, Y., Shen, X., Ma, L., Zhang, M. Y., Wang, T., Li, Y. S., Wang, Z. F., Luo, C. L., and Tao, L. Y. (2016) Mitochondrial division inhibitor 1 (Mdivi-1) offers neuroprotection through diminishing cell death and improving functional outcome in a mouse model of traumatic brain injury. Brain research 1630, 134-143
76. Singh, I. N., Sullivan, P. G., Deng, Y., Mbye, L. H., and Hall, E. D. (2006) Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 26, 1407-1418
77. Lifshitz, J., Sullivan, P. G., Hovda, D. A., Wieloch, T., and McIntosh, T. K. (2004) Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion 4, 705-713
78. Rustom, A., Saffrich, R., Markovic, I., Walther, P., and Gerdes, H. H. (2004) Nanotubular highways for intercellular organelle transport. Science 303, 1007-1010
79. Wang, X., and Gerdes, H. H. (2015) Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell death and differentiation 22, 1181-1191
80. Pacak, C. A., Preble, J. M., Kondo, H., Seibel, P., Levitsky, S., Del Nido, P. J., Cowan, D. B., and McCully, J. D. (2015) Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function. Biology open 4, 622-626