研究生: |
李亭諭 Lee, Tyng-Yuh |
---|---|
論文名稱: |
新式細菌膜檢測方法於慢性傷口之應用 Development of the rapid detection approach for determining the biofilm growth on chronic wounds |
指導教授: |
鄭兆珉
Cheng, Chao-Min |
口試委員: |
魯才德
Lu, Tsai-Te 鄭乃禎 Cheng, Nai-Chen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 慢性傷口 、細菌膜 、快速診斷 、比色法 |
外文關鍵詞: | chronic wounds, biofilm, rapid diagnostic, colorimetric |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當傷口於30天內顯少或沒有癒合的徵象,則被定義為慢性傷口(Chronic Wounds)。當病人本身具有潛在疾病根原,容易延遲癒合機制並形成慢性傷口,目前發生比例更隨著老年人口、糖尿病或其他慢性疾病病患人口的增加而逐年攀升,使慢性傷口對於全球醫療照護上的影響甚鉅。
細菌膜感染是目前慢性傷口上常見的問題之一,根據研究顯示約有六成的慢性傷口表面有細菌膜的生長,其所生成的外圍基質提供微生物良好的生長環境並影響宿主的免疫反應,此外因細菌膜對於抗生素的抗藥性較高,對於慢性傷口的治療上造成極大的困擾,故判斷傷口上是否有細菌膜的生成為一迫切的問題。
有鑒於現今細菌膜的檢測方法較為耗時及複雜,本研究建立一套化學染色法,針對細菌膜基質中的成分-多醣體作為檢測目標,利用具生物相容性之帶正電荷的尼龍轉印膜來採集傷口檢體,再以具專一性的Alcian Blue進行染色,最後藉由比色法來判斷是否有細菌膜的生成。本研究以慢性傷口感染上常見的菌種:金黃色葡萄球菌及綠膿桿菌此兩株菌作為in-vitro model,來探討染色條件的最佳化,結果顯示以5%的十六烷基三甲基氯化銨(CTAC)陽離子界面活性劑作為Blocking及Wash試劑,有助於降低背景訊號干擾來提高判斷的精準性。此外我們收取15組臨床傷口檢體進行染色方法的驗證,實驗結果顯示本研究的Alcian Blue染色法與細菌培養法具有8成的一致性,且此染色方法可在數分鐘內完成,我們期此方法能提供臨床、居家照護上一個簡易、非侵入式且快速的重點照護方法,以提升慢性傷口的照護品質。
Wounds without the normal healing phases (i.e., more than 30 days) have been defined as chronic wounds. How to deal with the chronic wounds has become one of the major worldwide healthcare issues since the elder population is growing. The chronic wounds, such as pressure ulcers, diabetic foot ulcers as well as venous ulcers, have been common problems among elder patients with chronic diseases (e.g., diabetics). During the past decade, the clinical-based evidence has been recognized the bacterial infection as one of the important factors for both the diagnosis and treatment of chronic wounds.
Recent studies have indicated that 60% of the chronic wound has been characterized to mainly contain the biofilm versus 6% of the acute wound. The biofilm has been identified as the co-growth community with multiple types of bacteria that is built off the extra polymeric matrix to support the exchange of nutrients and wastes. Such a community naturally prefer to attach the specific surface such as wound beds – chronic wounds later on. More importantly, the biofilm (containing several types of bacteria) shows the better resistance to the commonly-use antibiotics associated with the host immune responses. The biofilm-based wound therapy therefore has been extensively addressed. However, before the healthcare persons determine the precise treatment plan to deal with the wounds, one of the critical issues is to diagnose whether the biofilm has been formed onto the wound beds – what we would like to focus in this study.
In this study, we have established a colorimetric-based approach with the characteristics of the simplicity, inexpensiveness and time-saving, allowing us to quickly detect the biofilm on the wound beds – an emergency issue in multiple divisions of medicine. Unlike the conventional bacteria culture method, we used the biofilm extracellular matrix, which contains polysaccharides, to detect whether the biofilm exists onto the wound bed. We chose the S. aureus and P. aeruginosa, which are the most common type of infection bacteria in chronic wounds, to build up the in-vitro model to optimize our staining protocol. The experiment showed that using Nylon transfer membrane with the positive charged to collect the sample and 5% Cetyl trimethyl ammonium chloride (CTAC) as the blocking and washing solution has a better performance to decrease the noise. Finally, we collect the 15 clinical wound tissue samples to verify our staining protocol. It showed the 80% of consistency with the tissue culture method and the whole staining procedure can be done in few minutes. We believe, this study, could provide a practical point-of-care approach with a good sensitivity for clinical use to deal with this longstanding medicine issue.
1. T. Velnar, T. Bailey, V. Smrkolj, The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. Journal of International Medical Research 37, 1528-1542 (2009).
2. J. Li, J. Chen, R. Kirsner, Pathophysiology of acute wound healing. Clinics in Dermatology 25, 9-18 (2007).
3. M. B. Serra et al., From Inflammation to Current and Alternative Therapies Involved in Wound Healing. Int J Inflam 2017, 3406215-3406215 (2017).
4. A. J. Singer, R. A. F. Clark, Cutaneous Wound Healing. New England Journal of Medicine 341, 738-746 (1999).
5. N. N. Nissen et al., Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 152, 1445-1452 (1998).
6. A. C. d. O. Gonzalez, T. F. Costa, Z. d. A. Andrade, A. R. A. P. Medrado, Wound healing - A literature review. An Bras Dermatol 91, 614-620 (2016).
7. A. Bishop, Role of oxygen in wound healing. Journal of Wound Care 17, 399-402 (2008).
8. E. J. Boyko et al., A prospective study of risk factors for diabetic foot ulcer. The Seattle Diabetic Foot Study. Diabetes Care 22, 1036 (1999).
9. G. Han, R. Ceilley, Chronic Wound Healing: A Review of Current Management and Treatments. Advances in Therapy 34, 599-610 (2017).
10. G. S. Lazarus et al., Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair and Regeneration 2, 165-170 (1994).
11. Y.-Y. Huang et al., Diabetes-related kidney, eye, and foot disease in Taiwan: An analysis of the nationwide data for 2000–2009. Journal of the Formosan Medical Association 111, 637-644 (2012).
12. P. G. Bowler, B. I. Duerden, D. G. Armstrong, Wound microbiology and associated approaches to wound management. Clinical microbiology reviews 14, 244-269 (2001).
13. T. Dinh, A. Veves, Microcirculation of the Diabetic Foot. Current Pharmaceutical Design 11, 2301-2309 (2005).
14. U. A. Okonkwo, L. A. DiPietro, Diabetes and Wound Angiogenesis. Int J Mol Sci 18, 1419 (2017).
15. S. Khanna et al., Macrophage Dysfunction Impairs Resolution of Inflammation in the Wounds of Diabetic Mice. PLOS ONE 5, e9539 (2010).
16. R. Chandki, P. Banthia, R. Banthia, Biofilms: A microbial home. J Indian Soc Periodontol 15, 111-114 (2011).
17. R. M. Donlan, Biofilm Formation: A Clinically Relevant Microbiological Process. Clinical Infectious Diseases 33, 1387-1392 (2001).
18. E. Maunders, M. Welch, Matrix exopolysaccharides; the sticky side of biofilm formation. FEMS Microbiology Letters 364, (2017).
19. W. M. Dunne, Bacterial Adhesion: Seen Any Good Biofilms Lately? Clinical Microbiology Reviews 15, 155 (2002).
20. K. A. Kline, S. Fälker, S. Dahlberg, S. Normark, B. Henriques-Normark, Bacterial Adhesins in Host-Microbe Interactions. Cell Host & Microbe 5, 580-592 (2009).
21. A. Omar, J. B. Wright, G. Schultz, R. Burrell, P. Nadworny, Microbial Biofilms and Chronic Wounds. Microorganisms 5, 9 (2017).
22. D. López, H. Vlamakis, R. Kolter, Biofilms. Cold Spring Harb Perspect Biol 2, a000398-a000398 (2010).
23. R. M. Donlan, Biofilms: microbial life on surfaces. Emerg Infect Dis 8, 881-890 (2002).
24. J. F. Wilkinson, The extracellualr polysaccharides of bacteria. Bacteriol Rev 22, 46-73 (1958).
25. H.-C. Flemming, J. Wingender, The biofilm matrix. Nature Reviews Microbiology 8, 623-633 (2010).
26. I. W. Sutherland, The biofilm matrix – an immobilized but dynamic microbial environment. Trends in Microbiology 9, 222-227 (2001).
27. G. A. James et al., Biofilms in chronic wounds. Wound Repair and Regeneration 16, 37-44 (2008).
28. B. I. Duerden, Virulence Factors in Anaerobes. Clinical Infectious Diseases 18, S253-S259 (1994).
29. J. R. Sharpe, K. L. Harris, K. Jubin, N. J. Bainbridge, N. R. Jordan, The effect of pH in modulating skin cell behaviour. British Journal of Dermatology 161, 671-673 (2009).
30. E. M. Jones, C. A. Cochrane, S. L. Percival, The Effect of pH on the Extracellular Matrix and Biofilms. Adv Wound Care (New Rochelle) 4, 431-439 (2015).
31. C. Attinger, R. Wolcott, Clinically Addressing Biofilm in Chronic Wounds. Adv Wound Care (New Rochelle) 1, 127-132 (2012).
32. J. Larouche, S. Sheoran, K. Maruyama, M. M. Martino, Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Adv Wound Care (New Rochelle) 7, 209-231 (2018).
33. M. R. Parsek, P. K. Singh, Bacterial Biofilms: An Emerging Link to Disease Pathogenesis. Annual Review of Microbiology 57, 677-701 (2003).
34. P. S. Stewart, J. William Costerton, Antibiotic resistance of bacteria in biofilms. The Lancet 358, 135-138 (2001).
35. International Wound Infection Institute (IWII), Wound infection in clinical practice. (2016).
36. S. E. Gardner et al., Diagnostic validity of three swab techniques for identifying chronic wound infection. Wound Repair and Regeneration 14, 548-557 (2006).
37. L. Li, N. Mendis, H. Trigui, J. D. Oliver, S. P. Faucher, The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5, 258-258 (2014).
38. F. Cerca et al., SYBR green as a fluorescent probe to evaluate the biofilm physiological state of Staphylococcus epidermidis, using flow cytometry. Can. J. Microbiol. 57, 850-856 (2011).
39. A. Oates et al., The visualization of biofilms in chronic diabetic foot wounds using routine diagnostic microscopy methods. J Diabetes Res 2014, 153586-153586 (2014).
40. Y.-K. Wu, N.-C. Cheng, C.-M. Cheng, Biofilms in Chronic Wounds: Pathogenesis and Diagnosis. Trends in Biotechnology 37, 505-517 (2019).
41. M. I. Klein, K. M. Scott-Anne, S. Gregoire, P. L. Rosalen, H. Koo, Molecular approaches for viable bacterial population and transcriptional analyses in a rodent model of dental caries. Mol Oral Microbiol 27, 350-361 (2012).
42. R. D. Wolcott, D. D. Rhoads, A study of biofilm-based wound management in subjects with critical limb ischaemia. Journal of Wound Care 17, 145-155 (2008).
43. E. Lebrun, M. Tomic-Canic, R. S. Kirsner, The role of surgical debridement in healing of diabetic foot ulcers. Wound Repair and Regeneration 18, 433-438 (2010).
44. S.-K. Han, in Innovations and Advances in Wound Healing, S.-K. Han, Ed. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2016), pp. 151-182.
45. D. D. Rhoads, R. D. Wolcott, S. L. Percival, Biofilms in wounds: management strategies. Journal of Wound Care 17, 502-508 (2008).
46. G. Nakagami et al., Biofilm detection by wound blotting can predict slough development in pressure ulcers: A prospective observational study. Wound Repair and Regeneration 25, 131-138 (2017).
47. G. Nakagami et al., Rapid detection of biofilm by wound blotting following sharp debridement of chronic pressure ulcers predicts wound healing: A preliminary study. International Wound Journal, (2019).
48. J. Kucera et al., Multispecies biofilm in an artificial wound bed—A novel model for in vitro assessment of solid antimicrobial dressings. Journal of Microbiological Methods 103, 18-24 (2014).
49. G. A. O'Toole, Microtiter dish biofilm formation assay. J Vis Exp, 2437 (2011).
50. J. E. Scott, J. Dorling, Differential staining of acid glycosaminoglycans (mucopolysaccharides) by Alcian blue in salt solutions. Histochemie 5, 221-233 (1965).
51. J. E. Scott, G. Quintarelli, M. C. Dellovo, The chemical and histochemical properties of Alcian Blue. Histochemie 4, 73-85 (1964).
52. H. F. Steedman, Alcian Blue 8GS: A New Stain for Mucin. Quarterly Journal of Microscopical Science s3-91, 477 (1950).
53. L. Kjellén, U. Lindahl, PROTEOGLYCANS: STRUCTURES AND INTERACTIONS. Annual Review of Biochemistry 60, 443-475 (1991).
54. M. Karlsson, I. Edfors-Lilja, S. Björnsson, Binding and Detection of Glycosaminoglycans Immobilized on Membranes Treated with Cationic Detergents. Analytical Biochemistry 286, 51-58 (2000).
55. E. R. Tovey, B. A. Baldo, Protein binding to nitrocellulose, nylon and PVDF membranes in immunoassays and electroblotting. Journal of Biochemical and Biophysical Methods 19, 169-183 (1989).