簡易檢索 / 詳目顯示

研究生: 廖克敏
Danny Ke-Min Liao
論文名稱: 熱氣泡式微型加速度計之設計、製造與測試
A Thermal-Bubble-Based Micromachined Accelerometer
指導教授: 陳榮順
Dr. Rongshun Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 111
中文關鍵詞: 微加速度計熱氣泡熱毛細對流
外文關鍵詞: Micromachined accelerometer, Thermal-bubble, Thermocapillary convection
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來微加速度計被廣泛的運用於許多領域中,包括:車輛工業、消費性電子產品、導航系統、軍事及機器手臂等。然而,在應用方面,目前微加速度計的性能仍有改善的空間。本文提出一熱氣泡式微加速度計,其具有無質量塊、頻率響應快、體積小、靈敏度高等優點,此新的感測機制係利用一高熱通量的加熱器於密閉的流體環境中加熱以產生熱氣泡,藉由量測流場內,因外加慣性力產生的溫度變化情形,感測出此加速度的大小及方向。
    本文針對此加速度計的基本物理特性進行分析,並利用數值方法觀察流場內流體的熱傳與流動的行為,闡明在微觀尺度下兩相流的運動機制,藉以獲得加速度與溫度分佈的關係,進而評估此加速度計的性能。本研究利用微加工的方式成功製作出加速度計原型,並利用所建構實驗平台量測加速度計之靜態與動態特性,探討此加速度計於不同元件尺寸與操作條件下,對其性能所造成的影響。同時,針對此加速度計的穩定度、雜訊、解析度、靈敏度等做深入的研討。本文希望能為加速度計於將來微機電技術的應用中,提出新的設計概念。


    A novel micromachined accelerometer based on micro thermal-bubble technology is proposed and demonstrated in this dissertation. Unlike the other techniques, the only moving element in this accelerometer is a small thermal-bubble created by using a high flux heater to vaporize the liquid contained in the micro chamber. The accelerometer consists mainly of a heating resistor, which creates a symmetrical temperature profile, and several pairs of temperature sensors placed symmetrically on either side of the heater. The bubble technology is employed due to the clear interface between thermal-bubble and working liquid, providing good thermal conduction and high density.
    The basic physical characteristics including the heat transfer and fluid flow behavior of this accelerometer have been analyzed and discussed in this work. The feasibility and performance of the proposed accelerometer are verified using numerical simulations and demonstrated experimentally using a designed test setup. The prototype devices indicate that a sensitivity of 200 mV/g for an operating power of 60 mW can be realized. The frequency response containing DI water is measured to be 200 Hz, and the corresponding noise equivalent acceleration is approximately 1 mg/Hz1/2. The results conclude that the presented design has better response and higher sensitivity comparing to its counterparts.

    論 文 中 文 摘 要 I Table of Contents V List of Figures VIII List of Tables XII Nomenclature XIII Acknowledgements XVI Vita XVIII Publications and Presentations XIX Abstract XXII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Review 5 1.3 Overview of This Dissertation 12 Chapter 2 Analysis and Design of Micro Accelerometer 15 2.1 Bubble Formation Mechanisms 15 2.1.1 Heterogeneous Nucleation 16 2.1.2 Homogeneous Nucleation 17 2.1.3 Bubble Growth 19 2.1.4 Stable and Controllable Bubbles 19 2.2 Mathematical Formulation 23 2.3 Dimensional Analysis 27 2.4 Design Concern 31 2.5 Device Design 33 Chapter 3 Numerical Analysis for Micro Accelerometer 40 3.1 Overview of CFDRC 40 3.2 Numerical Simulation Approach 41 3.3 Results and Discussion 43 Chapter 4 Fabrication of Micro Accelerometer 56 4.1 Micromachining Process 56 4.2 GenerationⅠ Micro Accelerometer 59 4.2.1 Process Flow 59 4.2.2 Fabrication Result 60 4.3 GenerationⅡ Micro Accelerometer 63 4.3.1 Process Flow 63 4.3.2 Fabrication Result 66 4.4 Fabrication Difficulties 68 4.5 Device Packaging 71 Chapter 5 Experimental Results 78 5.1 Thermal-Bubble Generation 78 5.2 One-Dimensional Accelerometer Testing 82 5.2.1 Experimental Setup 83 5.2.2 Measurement Results 85 5.3 Two-Dimensional Accelerometer Testing 88 5.3.1 Experimental Setup 89 5.3.2 Measurement Results 90 5.4 Expected Accelerometer Applications 95 Chapter 6 Conclusions 99 Appendix A Table of Physical Properties of Selected Materials 102 Appendix B Fabrication Process 103 B.1 Micro Accelerometer Process Flow 103 REFERENCES 105

    [1] J. Willis and B. D. Jimerson, “A Piezoelectric Accelerometer,” in Proc. IEEE, vol. 52, pp. 871-872, 1964.
    [2] J. C. L. Peppen and K. B. Klassen, “Damping of Compression and Shear Piezoelectric Accelerometers by Electromechanical Feedback,” IEEE Transactions on Instrumentation and Measurement, pp. 572-577, 1988.
    [3] M. E. Motamedi, A. P. Andrews, and E. Brower, “Accelerometer Sensor Using Piezoelectric ZnO Thin Films,” Ultrasonics Symposium, pp. 303-307, 1982.
    [4] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined Inertial Sensors,” in Proc. IEEE, vol. 86, pp. 1640-1659, 1998.
    [5] R. Dao, D. E. Morgan, H. H. Kries, and D. M. Bachelder, “Convective Accelerometer and Inclinometer,” United States Patent #5,581,034, REMEC, Inc., 1996.
    [6] L. M. Roylance and J. B. Angell, “A Batch-Fabricated Silicon Accelerometer,” IEEE Transactions on Electronic Devices, vol. ED-26, pp. 1911-1917, 1979.
    [7] W. Reithmuller, W. Benecke, U. Schnakenberg, and B. Wagner, “A Smart Accelerometer with On-chip Electronics Fabricated by a Commercial CMOS Process,” Sensors and Actuators A, vol. 31, pp. 121-124, 1992.
    [8] N. H. Tea, V. Milanovi, C. A. Zincke, J. S. Suehle, M. Gaitan, M. E. Zaghloul, and J. Geist, “Hybrid Post-Processing Etching for CMOS-Compatible MEMS,” J. Microelectromechanical Systems, vol. 6, pp. 363-372, 1997.
    [9] P. W. Barth, F. Pourahmadi, R. Mayer, J. Poydock, and K. Petersen, “A Monolithic Silicon Accelerometer with Integral Air Damping and Overrange Protection,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, pp. 35-38, 1988.
    [10] H. Allen, S. Terry, and D. De Bruin, “Accelerometer System with Self-testable features,” Sensors and Actuators A, vol. 20, pp. 153-161, 1989.
    [11] F. Pourahmadi, L. Christel, and K. Petersen, “Silicon Accelerometer with New Thermal Self-test Mechanism,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, pp. 122-125, 1992.
    [12] A. Partridge, J. K. Reynolds, B. W. Chui, and E. M. Chow, “A High-Performance Planar Piezoresistive Accelerometer,” J. Microelectromechanical Systems, vol. 9, pp. 58-66, 2000.
    [13] J. H. Sim, D. K. Kim, Y. H. Bae, K. H. Nam, and J. H. Lee, “Six-Beam Piezoresistive Accelerometer with Self-cancelling Cross-axis Sensitivity,” Electronics Letters, vol. 34, pp. 497-499, 1998.
    [14] K. Kijin and S. Park, “Three Axis Piezoresistive Accelerometer Using Polysilicon Layer,” in Tech. Dig. Int. Conf. Solid-State Sensors and Actuators (Transducers’97), pp. 1221-1224, 1997.
    [15] E. J. J. Kruglick, B. A. Warneke, and K. S. J. Pister, “CMOS 3-Axis Accelerometers with Integrated Amplifier,” in Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS’98), pp. 631-636, 1998.
    [16] F. Goodenough, “Airbags Boom when IC Accelerometer Sees 50 g,” Electronic Design, vol. 39, no. 15, pp. 45-56, 1991.
    [17] G. Li and A. A. Tseng, “Low Stress Packaging of a Micromachined Accelerometer,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 24, pp. 18-25, 2001.
    [18] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Wuganuma, and M. Esashi, “Three-Axis Capacitive Accelerometer with Uniform Axial Sensitivities,” J. Micromechanics and Microengineering, vol. 6, pp. 431-435, 1996.
    [19] K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An Integrated Force-Balanced Capacitive Accelerometer for Low-g Applications,” Sensors and Actuators A, vol. 54, pp. 472-476, 1996.
    [20] J. W. Weigold, K. Najafi, and S. W. Pang, “Design and Fabrication of Submicrometer, Single Crystal Si Accelerometer,” IEEE Transactions on Electronic Devices, vol. ED-35, pp. 764-770, 1988.
    [21] K. J. Ma, N. Yazdi, and K. Najafi, “A Bulk-Silicon Capacitive Microaccelerometer with Built-in Overrange and Force Feedback Electrodes,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, pp. 160-163, 1994.
    [22] F. Rudolf, A. Jornod, J. Berqovist, and H. Leuthold, “Precision Accelerometers with □g Resolution,” Sensors and Actuators A, vol. 21, pp. 297-302, 1990.
    [23] C. Junseok, H. Kulah, and K. Najafi, “A Monolithic Three-Axis Micro-g Micromachined Silicon Capacitive Accelerometer,” J. Microelectromechanical Systems, vol. 14, pp. 235-242, 2005.
    [24] X. Huikai and G. K. Fedder, “A CMOS Z-Axis Capacitive Accelerometer With Comb-Finger Sensing,” in Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS’00), pp. 496-501, 2000.
    [25] J. M. Gomez, S. A. Bota, S. Marco, and J. Samitier, “Force-Balance Interface Circuit Based on Floating MOSFET Capacitors for Micromachined Capacitive Accelerometers,” IEEE Transactions on Circuits and Systems, vol. 53, pp 546-552, 2006.
    [26] P. Scheeper, J. O. Gullov, and L. M. Kofoed, “A Piezoelectric Triaxial Accelerometer,” J. Micromechanics and Microengineering, vol. 6, pp. 131-133, 1996.
    [27] P. L. Chen, R. S. Muller, and A. P. Andrews, “Integrated Silicon PI-FET Accelerometer with Proof Mass,” Sensors and Actuators A, vol. 5, no. 2, pp. 119-126, 1984.
    [28] K. Okada, “Tri-axial Piezoelectric Accelerometer,” in Tech. Dig. Int. Conf. Solid-State Sensors and Actuators (Transducers’95), pp. 566-569, 1995.
    [29] D. L. DeVoe and A. P. Pisano, “Surface Micromachined Piezoelectric Accelerometers,” J. Microelectromechanical Systems, vol. 10, no. 2, pp. 180-186, 2001.
    [30] Q. Zou, W. Tan, E. S. Kim, and G. E. Loeb, “Highly Symmetric Tri-axis Piezoelectric Bimorph Accelerometer,” in Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS’04), pp. 197-200, 2004.
    [31] Y. Hsu, C. K. Lee, L. S. Huang, C. C. Chu, and T. S. Chu, “Uncoupling Micromachined-based Piezoelectric Accelerometer Performance from A Sensor Structure Transfer Function,” IEEE/ASME Transactions on Mechatronics, vol. 10, pp. 338-341, 2005.
    [32] F. A. Levinzon, “Fundamental Noise Limit of Piezoelectric Accelerometer,” IEEE Sensors, vol. 4, pp. 108-111, 2004.
    [33] S. Bohua and R. Zhang, “MEMS Accelerometer with Two Thin Film Piezoelectric Read-out,” in Proc. MEMS, NANO and Smart Systems, pp. 318, 2005.
    [34] H. G. Yu, L. Zou, K. Deng, R. Wolf, S. Tadigadapa and S. Trolier-McKinstry, “Lead Zirconate Titanate MEMS Accelerometer Using Interdigitated Electrodes,” Sensors and Actuators A, vol. 107, pp. 26-35, 2003.
    [35] K. Kunz, Peter E. and G. Stemme, “Highly Sensitive Triaxial Silicon Accelerometer with Integrated PZT Thin Film Detectors,” Sensors and Actuators A, vol. 92, pp. 156-160, 2001.
    [36] P. M. Zavaracky, B. McClelland, K. Warner, J. Wang, F. Hartley, and B. Dolgin, “Design and Process Considerations for a Tunneling Tip Accelerometer,” J. Micromechanics and Microengineering, vol. 6, pp. 352-358, 1996.
    [37] C. Yeh and K. Najafi, “A Low-Voltage Bulk-Silicon Tunneling-Based Microaccelerometer,” in Tech. Dig. IEEE Int. Electron Devices Meeting (IEDM), pp. 593-596, 1995.
    [38] C. Yeh and K. Najafi, “A Low-Voltage Tunneling-Based Silicon Microaccelerometer,” IEEE Trans. Electron Devices, vol. 44, no. 11, pp. 1875-1882, 1997.
    [39] R. L. Kubena, G. M. Atkinson, W. P. Robinson, and F. P. Stratton, “A New Miniaturized Surface Micromachined Tunneling Accelerometer,” IEEE Electron Device Lett., vol. 17, pp. 306-308, 1996.
    [40] H. Dong, Y. Jia, Y. Hao, and S. Shen, “A Novel Out-of-Plane MEMS Tunneling Accelerometer,” Sensors and Actuators A, vol. 120, pp. 360-364, 2005.
    [41] H. K. Rockstad, T. K. Tang, J. K. Reynolds, T. W. Kenny, W. J. Kaiser, and T. B. Gabrielson, “A Miniature, High-Sensitivity, Electron Tunneling Accelerometer,” Sensors and Actuators A, vol. 53, pp. 227-231, 1996.
    [42] H. K. Rockstad, T. W. Kenny, J. K. Reynolds, W. J. Kaiser, and T. B. Gabrielson, “A Miniature High-Sensitivity Broad-band Accelerometer Based on Electron Tunneling Transducers,” Sensors and Actuators A, vol. 43, pp. 107-114, 1994.
    [43] C. H. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of A High-sensitivity Micromachined Tunneling Accelerometer with Micro-g Resolution,” J. Microelectromechanical Systems, vol. 7, pp. 235-244, 1998.
    [44] P. G. Hartwell, F. M. Bertsch, S. A. Miller, K. L. Turner, and N. C. MacDonald, “Single Mask Lateral Tunneling Accelerometer,” in Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS’98), pp. 340-344, 1998.
    [45] G. Binning and H. Rohrer, “Scanning Tunneling Microscopy,” IBM J. Res. Develop., vol. 30, pp. 355-369, 1986.
    [46] R. Hiratsuka, D. C. Van Duyn, T. Otraedian, and P. de Vries, “A Novel Accelerometer Based on Thermocouple,” in Tech. Dig. Int. Conf. Solid-State Sensors and Actuators (Transducer’91), pp. 420-423, 1991.
    [47] A. M. Leung, J. Jones, E. Czyzewska, J. Chen, and M. Pascal, “Micromachined Accelerometer with no Proof Mass,” in Tech. Dig. IEEE Int. Electron Devices Meeting (IEDM), pp. 899-902, 1997.
    [48] A. M. Leung, J. Jones, E. Czyzewska, J. Chen, and B. Woods, “Micromachined Accelerometer Based on Convection Heat Transfer,” in Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS’98), pp. 627-630, 1998.
    [49] V. Milanovic, E. Bowen, M. E. Zaghloul, N. H. Tea, J. S. Suehle, B. Payne, and M. Gaitan, “Micromachined Convective Accelerometers in Standard Integrated Circuits Technology,” Applied Physics Letters, vol. 76, no. 4, pp. 508-510, 2000.
    [50] V. Milanovic, E. Bowen, N. Tea, J. S. Suehle, B. Payne, M. E. Zaghloul, and M. Gaitan, “Convection-Based Accelerometer and Tilt Sensor Implemented in Standard CMOS,” in Proc. MEMS Symposia on International Mechanical Engineering and Exposition, pp. 627-630, 1998.
    [51] M. Bugnacki, J. Pyle, and P. Emerald, “A Micromachined Thermal Accelerometer for Motion, Inclination, and Vibration Measurement,” Sensors Magazine, 2001.
    [52] X. B. Luo, Y. J. Yang, F. Zheng, Z. X. Li, and Z. Y. Guo, “An Optimized Micromachined Convective Accelerometer with no Proof Mass,” J. Micromechanics and Microengineering, pp. 504-508, 2001.
    [53] X. B. Luo, Z. X. Li, Z. Y. Guo, and Y. J. Yang, “Thermal Optimization on Micromachined Convective Accelerometer,” Heat and Mass Transfer, vol. 38, pp. 705-712, 2002.
    [54] X. B. Luo, Z. X. Li, Z. Y. Guo, and Y. J. Yang, “ Study on Linearity of a Micromachined Convective Accelerometer,” Microelectronic Engineering, vol. 65, pp. 87-101, 2003.
    [55] S. Billat, H. Glosch, M. Kunze, F. Hedrich, J. Frech, J. Auber, and W. Lang, “Convection-based Micromachined Inclinometer Using SOI Technology,” in Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS’01), pp. 159-161, 2001.
    [56] S. Billat, H. Glosch, M. Kunze, F. Hedrich, J. Frech, J. Auber, H. Sandmaier, “Micromachined Inclinometer with High Sensitivity and Very Good Stability,” in Tech. Dig. Int. Conf. Solid-State Sensors and Actuators (Transducers’01), pp. 1488-1491, 2001.
    [57] S. Billat, H. Glosch, M. Kunze, F. Hedrich, J. Frech, J. Auber, H. Sandmaier, W. Wimmer, and W. Lang, “Micromachined Inclinometer with High Sensitivity and Very Good Stability,” Sensors and Actuators A, vol. 97-98, pp. 125-130, 2002.
    [58] F. Mailly, A. Giani, A. Martinez, R. Bonnot, P. Temple-Boyer, and A. Boyer, “Micromachined Thermal Accelerometer,” Sensors and Actuators A, vol. 103, pp. 359-363, 2003.
    [59] F. Mailly, A. Martinez, A. Giani, F. Pascal-Delannoy, and A. Boyer, “Design of A Micromachined Thermal Accelerometer: Thermal Simulation and Experimental Results,” Microelectronics Journal, vol. 34, pp. 275-280, 2003.
    [60] F. Mailly, A. Martinez, A. Giani, F. Pascal-Delannoy, and A. Boyer, “Effect of Gas Pressure on the Sensitivity of A Micromachined Thermal Accelerometer,” Sensors and Actuators A, vol. 109, pp. 88-94, 2003.
    [61] R. A. Youter, R. R. Baxter, S. Ohno, S. D. Hawley, and D. M. Wilson, “On A Micromachined Fluidic Inclinometer,” in Tech. Dig. Int. Conf. Solid-State Sensors and Actuators (Transducer’03), pp. 1279-1282, 2003.
    [62] L. Lin and J. Jones, “A Liquid-Filled Buoyancy-Driven Convective Micromachined Accelerometer,” J. Microelectromechanical Systems, vol. 14, pp. 1061-1069, 2005.
    [63] L. Lin and A. P. Pisano, “Thermal Bubble Formation on Polysilicon Micro Resistors,” ASME J. Heat Transfer, vol. 120, no. 3, pp. 735-742, 1998.
    [64] J. H. Tsai and L. Lin, “Transient Thermal Bubble Formation on Polysilicon Micro-Resistors,” J. Heat Transfer, vol. 124, pp. 375-382, 2002.
    [65] J. Y. Jung, J. Y. Lee, H. C. Park, and H. Y. Kwak, “Bubble Nucleation on Micro Line Heaters under Steady or Finite Pulse of Voltage Input,” International J. Heat and Mass Transfer, vol. 46, pp. 3897-3907, 2003.
    [66] R. Cole and S. V. Stralen, Boiling Phenomena: Hemisphere, vol. 1, 1979.
    [67] H. Kwak, R. L. Panton, “Tensile Strength of Simple Liquids Predicted by a Molecular Interaction Model, J. Phys. D: Appl. Phys., vol. 18, pp. 647-659, 1985.
    [68] C. T. Avedisian, Modeling Homogeneous Bubble Nucleation in Liquids, in: Modeling of Engineering Heat Transfer Phenomena, Computational Mechanics, 1998.
    [69] D. B. Kothe, W. J. Rider, S. J. Mosso, J. S. Brock, and J. I. Hochstein, “Volume Tracking of Interfaces Having Surface Tension in Two and Three Dimensions,” in Proc. the 34th Aerospace Science Meeting and Exhibit, AIAA 96-0859, 1996.
    [70] J. U. Brackbill, D. B. Kothe, and C. Zemach, “A Continuum Method for Modeling Surface Tension,” J. Computational Physics, vol. 100, pp. 335-354, 1992.
    [71] K. E. Petersen, “Silicon as a Mechanical Material,” Proc. IEEE, vol. 70, no. 5, pp. 420-457, 1982.
    [72] CFD-ACE+, V. 2003, Users Manual, CFD Research Corporation, Huntsville, AL.
    [73] F. G. Tseng, “A Micro Droplet Injector System,” Ph.D. Dissertation, University of California, Los Angeles, 1998.
    [74] G. Yan, P. C. H. Chan, I. M. Hsing, R. K. Sharma, J. K. O. Sin, and Y. Wang, “An Improved TMAH Si-etching Solution without Attacking Exposed aluminum,” Sensors and Actuators A, vol. 89, pp. 135-141, 1995.
    [75] N. Fujisuka, K. Hamaguchi, H. Funabashi, E. Kawasaki, and T. Fukada, “Silicon Anisotropic Etching without Attacking Aluminum with Si and Oxidizing Agent Dissolved in TMAH Solution,” Proc. TRANSDUCERS’03, pp. 1667-1670, 2003.
    [76] D. C. Duffy, O. Schueller, S. Brittain, and G. Whitesides, “Rapid Prototyping of Microfludic Systems in Polydimethylsiloxane,” Anal. Chem., vol. 70, pp. 4974-4984, 1998.
    [77] http://bioen.okstate.edu/Home/fharry/4212/HUMAN.PP.HTM

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE