研究生: |
范佳玉 Fan, Chia Yu |
---|---|
論文名稱: |
De novo protein sequencing, humanization and in vitro effects of an antihuman CD34 mouse monoclonal antibody (QBEND/10) 抗人CD34單克隆抗體(QBEND/10)之蛋白質從頭測序、人源化以及其體外應用效果 |
指導教授: |
呂平江
Lyu, Ping Chiang |
口試委員: |
張大慈
詹鴻霖 張文祥 周民元 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | 單株抗體 、從頭測序 、人源化 、CD34 、抑制血管新生治療 |
外文關鍵詞: | Monoclonal antibody, De novo sequencing, Humanization, CD34, Antiangiogenic therapy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
QBEND/10單克隆抗體是一帶有γ重鏈與λ輕鏈的老鼠免疫球蛋白,能夠專一性地辨識人類造血幹細胞上的表面抗原CD34。體外細胞研究結果顯示,QBEND/10可以降低人臍靜脈血管內皮細胞(HUVECs)形成管柱的機會,這表明該抗體具有阻斷腫瘤血管生成的潛在優勢。我們通過串聯質譜法(tandem mass spectrometry)提供了一種蛋白質從頭測序(de novo protein sequencing)的方法,用以確定 QBEND/10重鏈可變區與輕鏈可變區的氨基酸序列。為了降低免疫原性(immunogenicity)以增加QBEND/10抗體應用至臨床的機會,我們利用表面重塑(resurfacing)的方式將QBEND/10鼠源抗體人源化。實驗結果證明,使用從頭測序(de novo protein sequencing)方式得到的QBEND/10氨基酸序列加上鼠源抗體人源化處理,人源化QBEND/10抗體保留了原本老鼠QBEND/10抗體該有的生物學功能,包括對人類CD34蛋白質的結合動力學以及降低內皮細胞形成管柱的作用。
QBEND/10 is a mouse immunoglobulin gamma 1 heavy chain and lambda light chain monoclonal antibody with strict specificity against human hematopoietic progenitor cell antigen CD34. In vitro study showed that QBEND/10 impaired tube formation of human umbilical vein endothelial cells (HUVECs), suggesting that the antibody may be of potential benefit in blocking tumor angiogenesis. We provided a de novo protein sequencing method through tandem mass spectrometry to identify amino acid sequences in variable heavy and light chains of QBEND/10. To reduce immunogenicity for clinical applications, QBEND/10 was further humanized using resurfacing approach. We demonstrate that the de novo sequenced and humanized QBEND/10 retains biological functions of the parental mouse counterpart, including binding kinetics to CD34 and blockage of tube formation of HUVECs.
1. Simmons DL, Satterthwaite AB, Tenen DG, Seed B (1992) Molecular cloning of a cDNA encoding CD34, a sialomucin of human hematopoietic stem cells. J Immunol 148, 267-271.
2. Nielsen JS, McNagny KM (2008) Novel functions of the CD34 family. J Cell Sci 121, 3683-3692.
3. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133, 157-165.
4. Andrews RG, Singer JW, Bernstein ID (1986) Monoclonal antibody 12-8 recognizes a 115-kd molecule present on both unipotent and multipotent hematopoietic colony-forming cells and their precursors. Blood 67, 842-845.
5. Soligo D, Delia D, Oriani A, Cattoretti G, Orazi A, Bertolli V, et al. (1991) Identification of CD34+ cells in normal and pathological bone marrow biopsies by QBEND10 monoclonal antibody. Leukemia 5, 1026-1030.
6. Ito A, Nomura S, Hirota S, Suda J, Suda T, Kitamura Y (1995) Enhanced expression of CD34 messenger RNA by developing endothelial cells of mice. Lab Invest 72, 532-538.
7. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964-967.
8. Berenson RJ, Andrews RG, Bensinger WI, Kalamasz D, Knitter G, Buckner CD, et al. (1988) Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest 81, 951-955.
9. Mackie AR, Losordo DW (2011) CD34-positive stem cells: in the treatment of heart and vascular disease in human beings. Tex Heart Inst J 38, 474-485.
10. Blanchet MR, Gold M, Maltby S, Bennett J, Petri B, Kubes P, et al. (2010) Loss of CD34 leads to exacerbated autoimmune arthritis through increased vascular permeability. J Immunol 184, 1292-1299.
11. Maltby S, Freeman S, Gold MJ, Baker JH, Minchinton AI, Gold MR, et al. (2011) Opposing roles for CD34 in B16 melanoma tumor growth alter early stage vasculature and late stage immune cell infiltration. PLoS One 6, e18160.
12. Siemerink MJ, Hughes MR, Dallinga MG, Gora T, Cait J, Vogels IM, et al. (2016) CD34 Promotes Pathological Epi-Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy. PLoS One 11, e0157902.
13. Siemerink MJ, Klaassen I, Vogels IM, Griffioen AW, Van Noorden CJ, Schlingemann RO (2012) CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis 15, 151-163.
14. Alon R, Rosen S (2007) Rolling on N-linked glycans: a new way to present L-selectin binding sites. Nat Immunol 8, 339-341.
15. Cao Y, Arbiser J, D'Amato RJ, D'Amore PA, Ingber DE, Kerbel R, et al. (2011) Forty-year journey of angiogenesis translational research. Sci Transl Med 3, 114rv113.
16. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182-1186.
17. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, et al. (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161, 1163-1177.
18. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8, 592-603.
19. Barkefors I, Le Jan S, Jakobsson L, Hejll E, Carlson G, Johansson H, et al. (2008) Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2: effects on chemotaxis and chemokinesis. J Biol Chem 283, 13905-13912.
20. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, et al. (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7, 575-583.
21. Autiero M, Luttun A, Tjwa M, Carmeliet P (2003) Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 1, 1356-1370.
22. Marx M, Perlmutter RA, Madri JA (1994) Modulation of platelet-derived growth factor receptor expression in microvascular endothelial cells during in vitro angiogenesis. J Clin Invest 93, 131-139.
23. Ziche M, Maglione D, Ribatti D, Morbidelli L, Lago CT, Battisti M, et al. (1997) Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab Invest 76, 517-531.
24. Zhou M, Sutliff RL, Paul RJ, Lorenz JN, Hoying JB, Haudenschild CC, et al. (1998) Fibroblast growth factor 2 control of vascular tone. Nat Med 4, 201-207.
25. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7, 122-133.
26. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, et al. (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258, 1798-1801.
27. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, et al. (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 83, 4167-4171.
28. Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8, 21-43.
29. Yang EY, Moses HL (1990) Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol 111, 731-741.
30. Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18, 5356-5362.
31. Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W (1998) Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol 8, 529-532.
32. Siemerink MJ, Augustin AJ, Schlingemann RO (2010) Mechanisms of ocular angiogenesis and its molecular mediators. Dev Ophthalmol 46, 4-20.
33. Witmer AN, van Blijswijk BC, van Noorden CJ, Vrensen GF, Schlingemann RO (2004) In vivo angiogenic phenotype of endothelial cells and pericytes induced by vascular endothelial growth factor-A. J Histochem Cytochem 52, 39-52.
34. Sainson RC, Johnston DA, Chu HC, Holderfield MT, Nakatsu MN, Crampton SP, et al. (2008) TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood 111, 4997-5007.
35. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, et al. (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776-780.
36. Geudens I, Gerhardt H (2011) Coordinating cell behaviour during blood vessel formation. Development 138, 4569-4583.
37. Sgro C (1995) Side-effects of a monoclonal antibody, muromonab CD3/orthoclone OKT3: bibliographic review. Toxicology 105, 23-29.
38. Hwang WY, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36, 3-10.
39. Clark M (2000) Antibody humanization: a case of the 'Emperor's new clothes'? Immunol Today 21, 397-402.
40. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81, 6851-6855.
41. Verhoeyen M, Milstein C, Winter G (1988) Reshaping human antibodies: grafting an antilysozyme activity. Science 239, 1534-1536.
42. Padlan EA (1991) A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol Immunol 28, 489-498.
43. Roguska MA, Pedersen JT, Keddy CA, Henry AH, Searle SJ, Lambert JM, et al. (1994) Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc Natl Acad Sci U S A 91, 969-973.
44. Zhang W, Feng J, Li Y, Guo N, Shen B (2005) Humanization of an anti-human TNF-alpha antibody by variable region resurfacing with the aid of molecular modeling. Mol Immunol 42, 1445-1451.
45. Fontayne A, Vanhoorelbeke K, Pareyn I, Van Rompaey I, Meiring M, Lamprecht S, et al. (2006) Rational humanization of the powerful antithrombotic anti-GPIbalpha antibody: 6B4. Thromb Haemost 96, 671-684.
46. Staelens S, Desmet J, Ngo TH, Vauterin S, Pareyn I, Barbeaux P, et al. (2006) Humanization by variable domain resurfacing and grafting on a human IgG4, using a new approach for determination of non-human like surface accessible framework residues based on homology modelling of variable domains. Mol Immunol 43, 1243-1257.
47. Chiu WC, Lai YP, Chou MY (2011) Humanization and characterization of an anti-human TNF-alpha murine monoclonal antibody. PLoS One 6, e16373.
48. Almagro JC, Fransson J (2008) Humanization of antibodies. Front Biosci 13, 1619-1633.
49. Foltz IN, Karow M, Wasserman SM (2013) Evolution and emergence of therapeutic monoclonal antibodies: what cardiologists need to know. Circulation 127, 2222-2230.
50. Dercksen MW DG, de Haas M, von dem Borne AEG, van der Schoot CE. (1995) M10.2 Characterization of the CD34 cluster. In: Schlossman SF, Boumsell L, Gilks W, Harlan JM, Kishimoto T, Morimoto C, et al., editors. Leucocyte typing V. White cell differentiation antigens. . Proceedings of the 5th International Workshop and Conference; 1993 Nov 3-7; Boston, USA Oxford, New York, Tokyo: Oxford University Press, 850-853.
51. Marcatili P, Rosi A, Tramontano A (2008) PIGS: automatic prediction of antibody structures. Bioinformatics 24, 1953-1954.
52. Marcatili P, Olimpieri PP, Chailyan A, Tramontano A (2014) Antibody structural modeling with prediction of immunoglobulin structure (PIGS). Nat Protoc 9, 2771-2783.
53. Kim YR, Kim JS, Lee SH, Lee WR, Sohn JN, Chung YC, et al. (2006) Heavy and light chain variable single domains of an anti-DNA binding antibody hydrolyze both double- and single-stranded DNAs without sequence specificity. J Biol Chem 281, 15287-15295.
54. Lee JE, Kuehne A, Abelson DM, Fusco ML, Hart MK, Saphire EO (2008) Complex of a protective antibody with its Ebola virus GP peptide epitope: unusual features of a V lambda x light chain. J Mol Biol 375, 202-216.
55. Krivov GG, Shapovalov MV, Dunbrack RL, Jr. (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77, 778-795.
56. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714-2723.
57. Kabat EA, National Institutes of H, Columbia U (1991) Sequences of proteins of immunological interest. U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, MD.
58. Pedersen JT, Henry AH, Searle SJ, Guild BC, Roguska M, Rees AR (1994) Comparison of surface accessible residues in human and murine immunoglobulin Fv domains. Implication for humanization of murine antibodies. J Mol Biol 235, 959-973.
59. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
60. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107, 1589-1598.
61. Arnaoutova I, George J, Kleinman HK, Benton G (2009) The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 12, 267-274.
62. Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nature methods 4, 709-712.
63. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101, 9528-9533.
64. Guthals A, Bandeira N (2012) Peptide identification by tandem mass spectrometry with alternate fragmentation modes. Mol Cell Proteomics 11, 550-557.
65. Kabat EA, Wu, T.T., Bilofsky, H., Reid-Miller, M., Perry, H. (1983) Sequence of Proteins of Immunological Interest. National Institutes of Health, Bethesda.
66. Maiorov VN, Crippen GM (1994) Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J Mol Biol 235, 625-634.
67. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294, 93-96.
68. Delia D, Lampugnani MG, Resnati M, Dejana E, Aiello A, Fontanella E, et al. (1993) CD34 expression is regulated reciprocally with adhesion molecules in vascular endothelial cells in vitro. Blood 81, 1001-1008.
69. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82, 4-6.
70. Eskander RN, Randall LM (2011) Bevacizumab in the treatment of ovarian cancer. Biologics 5, 1-5.
71. Ferrara N (2010) Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev 21, 21-26.
72. Kato K, Radbruch A (1993) Isolation and characterization of CD34+ hematopoietic stem cells from human peripheral blood by high-gradient magnetic cell sorting. Cytometry 14, 384-392.
73. Thomas TE, Lansdorp PM (1992) Purification of CD34 positive cells from human bone marrow using high gradient magnetic separation. Prog Clin Biol Res 377, 537-544.