簡易檢索 / 詳目顯示

研究生: 周鈺展
Yu-Chang Chou
論文名稱: 生物相容撓性基材上導線製程與元件整合構裝
Electrical Routing and Integrated Package on Bio-compatible Flexible Substrates
指導教授: 賀陳弘
Hong Hocheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 94
中文關鍵詞: 封裝撓性基材聚醯亞胺微機電
外文關鍵詞: Packaging, Flexible substrate, Polyimide, MEMS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Although the technology of medical apparatus has advanced, the real-time monitoring patient for health conditions requires more progress. The real-time monitoring device can not only promote user’s awareness but also prevent disease, control chronic disease, and help provide correct diagnosis. This concept can be realized by integrating microsensors and microactuators on bio-compatible flexible substrates. A development of electrical routing and integrated package on bio-compatible flexible substrates has been designed and fabricated. Polyimide is used as flexible substrate to make electrical circuit and PDMS is used as protective layer to seal the whole device. The electrical connection between chip and circuit is connected by wire bond or flip chip technology. The realized packaging method can integrate electrical circuit, motionless components and movable components on flexible substrates. Chips can be embedded into flexible package and work on non-planar surface. The most characteristic advantage is that movable components, such as MEMS mirror, can be packaged and function inside the package by using the cover. This packaging method can provide good sealing ability, good tensile strength and good flexibility. It can easily attach to human skin and the strength of the package is well. This flexible packaging technology can be applied to communication or sensing technology when flexibility is required. The mechanical properties of PDMS are also realized in this study. Larger ratio of curing agent, higher curing temperature and longer heating duration can cause larger value of Young’s modulus. Besides, the density of PDMS is barely affected by the ratio of curing agent.


    僅管健康醫療的科技不斷推陳出新,至今卻甚少可提供即時偵測患者健康狀況的醫療設備。因此,本研究從事穿戴式即時健康監測系統,能夠隨時了解身體狀況,還可以輔助使用者及早預防疾病、監督慢性病、追蹤健康狀況,並立即提供正確的醫學診斷。此概念可藉由將微感測器與微制動器整合於生物相容之撓性基材上來達成。生物相容撓性基材上導線製程與元件整合構裝技術在本研究中成功地設計與實現。本研究利用聚醯亞胺(polyimide)當作撓性基材製作電路,利用打線或覆晶接合技術將晶片與基材上導線連接,並利用聚二甲基矽氧烷(PDMS)當作保護層將晶片密封。此封裝方式可將電路、靜態元件和動態元件成功整合在撓性基材上,使其能夠在非平面上工作。此封裝技術最大的特色就是利用封蓋將微鏡面等動態元件成功封裝,使其能在封裝體內活動。經過測試,此封裝方式擁有良好的氣密性、抗拉性和撓性,能夠輕易緊貼於人體皮膚上並提供適當強度。在應用方面,此撓性封裝技術可使用在需要撓性條件之傳輸或感測設備上。本篇論文也對聚二甲基矽氧烷的機械性質做一研究,其楊氏模數實驗結果為固化劑比例越高、固化溫度越高、加熱時間越長,聚二甲基矽氧烷的楊氏模數值就會越大,反之則越小。在密度方面則是幾乎不受固化劑比例的影響。

    摘要 I Abstract II Acknowledgements III Contents IV List of Figures VII List of Tables XI Chapter 1 Introduction 1 1-1 Background 1 1-2 Purpose of Study 3 1-3 Literature Review 4 Chapter 2 Experimental Method 14 2-1 Selection of Flexible Material 14 2-2 Experimental Equipment 16 2-2-1 Photoresist Spinner 16 2-2-2 Mask Aligner 16 2-2-3 Hot Plate 17 2-2-4 Electrical Balance 18 2-2-5 Vacuum Degas Chamber 18 2-2-6 Micro Tensile Tester 18 2-3 PDMS Forming Process 19 2-4 Epoxy Forming Process 20 2-5 Making Electrical Circuit on Flexible Substrate 21 2-6 Process of Flexible Packaging 22 2-6-1 Packaging Process by Flip Chip 22 2-6-2 Packaging Process by Wire Bonding 23 2-6-3 Selection of Packaging Process 23 2-7 Packaging of motionless and movable components 24 Chapter 3 Result and Discussion 41 3-1 Mechanical Properties of PDMS 41 3-1-1 Density 41 3-1-2 Stress-Strain Relationship 42 3-2 Test of Flexible Package 46 3-2-1 Sealing Test 47 3-2-2 Stretching Test 48 3-2-3 Bending Test 50 Chapter 4 Conclusion and Future Prospect 75 Reference 76 Appendix 79

    [1]http://www.eettaiwan.com/

    [2]http://www.imec.be/

    [3]http://www.letsgodigital.org/en/news/articles/story_5291.html

    [4]張宗隆,“微陣列式生醫檢體填充晶片之研製”,國立清華大學工程與系統科學系碩士論文,民國九十年七月

    [5]蔡逸勤,“蛋白質微陣列晶片之壓印機構設計與其影像檢測”,國立清華大學工程與系統科學系碩士論文,民國九十一年七月

    [6]Eun-Soo Hwang, Yong-Jun Kim, Byeong-Kwon Ju, “Flexible polysilicon sensor array modules using“etch-release” packaging scheme,” Sensors and Actuators A 111, 2004, pp.135-141.

    [7]Gloria Y. Yang, Vasudev J. Bailey, Yu-Hsin Wen, Gisela Lin, William C. Tang, Joyce H. Keyak, “Fabrication and Characterization of Microscale Sensors for Bone Surface Strain Measurement,” Sensors, Proceedings of IEEE, 2004, pp. 1355-1358.

    [8]Kyu-Ho Shin, Chang-Ryoul Moon, Tae-Hee Lee, Chang-Hyun Lim, Yong-Jun Kim, “Flexible wireless pressure sensor module,” Sensors and Actuators A 123-124, 2005, pp.30-35.

    [9]C. Landesberger, G. Klink, G. Schwinn, R. Aschenbrenner, New dicing and thinning concept improves mechanical reliability of ultra thin silicon, in: Proceedings of the International Symposium on Adv. Pack. Mater., 2001, pp. 92–97.

    [10]C. Landesberger, S. Scherbaum, G. Schwinn, H. Spohrle, New process scheme for wafer thinning and stress-free separation for ultra thin ICs, in: Proceedings of the Conference on Microsystems Technologies, 2001, pp. 431–436.

    [11]F. Jiang, Y. C. Tai, K. Walsh, T. Tsao, G. B. Lee, and C. H. Ho., “A Flexible MEMS Technology and Its First Application to Shear Stress Sensor Skin,” MEMS-97, Nagoya Castle, Japan, 1997, pp. 465-470.

    [12]T. Akin, K. Najafi, R.H. Smoke, R.M. Bradley, A micromachined silicon sieve electrode for nerve regeneration applications, IEEE Trans. Biomed. Eng., vol.41, 1994, pp. 305–313.

    [13]R.R. Ricahrdson, J.A. Miller, W.M. Reichert, Polyimides as biomaterials: preliminary biocompatibility testing, J. Biomater., vol.14, 1993, pp. 627–635.

    [14]http://www.9e.com.tw/tw/product/PYRALUX-AC.pdf

    [15]St□phanie P. Lacour, Sigurd Wagner, Zhenyu Huang, Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Applied Physics Letters, vol.82, 2003, pp. 2404-2406.

    [16]Sigurd Wagner, St□phanie P. Lacour, Joyelle Jones, Pai-Hui I. Hsu, James C. Sturm, Teng Li, Zhigang Suo, “Electronic skin: architecture and components,” Physica E, vol. 25, 2004, pp. 326-334.

    [17]D. S. Gray, J. Tien, C. S. Chen, “High-conductivity elastomeric electronics,” Adv. Mater., vol. 16, no. 5, Mar. 2004, pp. 393–397.

    [18]Dominique Brosteaux, Fabrice Axisa, Mario Gonzalez, Jan Vanfleteren, “Design and Fabrication of Elastic Interconnections for Stretchable Electronic Circuits,” IEEE Electron Device Letters, vol. 28, no. 7, July 2007, pp. 552-554.

    [19]Candice Tsay, St□phanie P. Lacour, Sigurd Wagner, Barclay Morrison, “Architecture, Fabrication, and Properties of Stretchable Micro-electrode Arrays,” Sensors, 2005 IEEE, pp. 1169-1172.

    [20]Un-Byoung Kang, Young-Ho Kim, “Electrical characteristics of fine pitch flip chip solder joints fabricated using low temperature solders,” Electronic Components and Technology Conference, 2004. Proceedings. 54th, vol.2, pp. 1952-1958.

    [21]Sony Chemicals Corp. “ACF for Chip on Flex FP16613”, Revised Edition, 2001.

    [22]D. Amani, C. Liu and N. Aluru, "Re-configurable fluid circuits by PDMS elastomer micromachining", 12th IEEE International Conference on Micro Electro Mechanical Systems, 1999. MEMS'99, pp. 222-227.

    [23]林紋瑞,“評估細胞力學之微陣列力量感測系統研發”,國立成功大學醫學工程研究所碩士論文, 民國九十二年

    [24]http://culture.9c9c.com.cn/mystery/humano/topic_3083.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE