簡易檢索 / 詳目顯示

研究生: 施經瑋
論文名稱: 多元合金之熱電性能研究
指導教授: 廖建能
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 64
中文關鍵詞: 熱電多元
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通常一個好的熱電材料必須具備良好的電導係數及Seebeck係數,以及低熱導係數,這是一般傳統合金所無法具備的。相對於單一主元素之傳統合金,具多主元素之高熵合金係一嶄新的冶金概念。在目前已開發之部分高熵合金系統業已展現出極優異之機械性質與化學性質,然而高熵合金之電性質與熱電性質則尚未有詳盡之探討。本研究以half-heusler三元合金當作出發點,利用真空電弧熔煉製作合金,經由熱處理後,量測其熱電性質,找到兩個具有發展潛力的系統:ZrTiSnSiNi2、ZrTiSnGeNi2,室溫下熱電優值ZT分別為0.02與0.045。當在中高溫的範圍(250~300℃)時功率因子(S2/ρ)約可增加3~4倍,將成份改質為Zr0.9Ti0.9Nb0.2SnSiNi2,結果顯示室溫下的熱電優值ZT約為0.078。利用X光結晶繞射(XRD)、掃瞄式電子顯微鏡(SEM)與能量散佈光譜儀(EDS)鑑定出此二多元合金系統為具有半導體與金屬組成相的複合材料。


    A good thermoelectric material requires high Seebeck coefficient (S) and electrical conductivity (σ) but low thermal conductivity (κ), which are not common found in traditional metallic alloys. As compound with traditional metallic alloy, high entropy alloy of multi constituent element is a newly developed metallurgical concept. A variety of different forms of the multi-element alloys have been demonstrated to possess superior mechanical and chemical properties. However, the electrical and thermoelectric properties of the multi-element alloys have not been thoroughly explored yet. In this study, multi-element alloys were prepared by arc-melting and thermal annealing. Their thermoelectric properties were characterized after appropriate sample preparation. We find two multi-element alloy systems based on half-Heusler structure:ZrTiSnSiNi2 and ZrTiSnGeNi2. The thermoelectric figure of merits (ZT , Z= S2/(ρ×κ)) of these multi-element alloys were equal to be 0.02 and 0.045, respectively, at room temperature. These multi-element alloys showed 3 times increase in power factor (S2/ρ) in the middle temperature range (250℃ to 300℃). By adding Nb element into the alloy forming Zr0.9Ti0.9Nb0.2SnSiNi2, the thermoelectric figure of merit was found to be 0.078 at room temperature. The multi- element alloys were identified to be a composite material containing semiconductor-like phase and metallic-like phase by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).

    目錄………………………………………………………………..……Ⅰ 圖目錄…………………………………………...…………………….. Ⅳ 表目錄………………………………...……………………….………. Ⅴ 摘要……………………………………………………………….…...VII 英文摘要……………………………………………………..………VIII 第一章、簡介…………………………………………………..…………1 1.1研究動機………………………………………..…………………….1 1.2實驗目的……………………………………………..……………….2 第二章、文獻回顧………………………………………………..………3 2.1熱電簡介……………….……………………………..………………2 2.1.1熱電現象………………………….…………….………….3 2.1.2 Seebeck效應………………………………………………3 2.1.3 Peltier效應……………………………………………...…4 2.1.4 Thomson效應…………………….…………………..……5 2.1.5 Seebeck效應、Peltier效應與Thomson效應之關聯性….6 2.1.6熱電性質…………………….…………………….……….7 2.2高熵合金簡介………………………………………………..……...10 2.3 half-Heusler結構熱電性質………………………….......................11 第三章、實驗方法與分析………………………………………………14 3.1實驗規劃……………………………………….…………………....14 3.2試片製備…………………………………………………………….17 3.2.1成分計算..…………….…….…………………………….17 3.2.2合金熔煉……………………….…………………………18 3.2.3高溫熱處理…………………………….…………………20 3.2.4研磨拋光…..……………………………………………...20 3.2.5厚膜阻絕層製作………………………………………….20 3.2.6定義熱傳導係數量測用微加熱帶……………………….21 3.3 Seebec係數量測方式…...……………………..…………...………24 3.4 電阻係數量測方式……………………………………….….…….26 3.5 載子濃度量測……………………………………………..….……29 3.6 熱傳導係數量測方式……………………………………………...30 3.6.1 加熱線上的溫度變化……………………………………33 3.6.2 數學推導…………………………………………………35 第四章、實驗結果與討論………………………………………………38 4.1實驗結果….……………………………………………………...….38 4.1.1 ZrTiSnSiNi2之熱電性質……………..…………………..38 4.1.1.1熱處理對Seebeck 係數與電阻係數的影響…….38 4.1.1.2 Seebeck係數與電阻係數隨溫度的變化…………40 4.1.1.3熱處理對ZrTiSnSiNi2晶體結構之影響………….42 4.1.2 ZrTiSnGeNi2之熱電性質…………...…………….……...48 4.1.2.1 Seebeck係數與電阻係數………………………...48 4.1.2.2 Seebeck係數與電阻係數隨溫度的變化………...49 4.1.1.3熱處理對ZrTiSnGeNi2晶體結構之影響…………51 4.3霍爾效應量測…………….…………………………………………54 4.4 熱傳導係數………………………………….……………………..54 4.5 合金定量分析-感應式耦合電漿原子發光光譜儀………………..56 4.6 添加Nb的影響…………………………………………………….58 第五章、結論……………………………………………………..……60 參考文獻……………………………………………………..…..…..…61 附錄.儀器設備………………………………………………………….64 圖目錄 圖2-1、Seebeck效應示意圖…………………………………………….4 圖2-2、Peltier效應示意圖………………………...…………………….5 圖2-3、Thomson效應示意圖…………………………………………...5 圖2-4、熱電線路圖……………………………………………….……..6 圖2-5、各類熱電材料其熱電優值(ZT)隨溫度變化……………………9 圖2-6、Heusler晶體結與half-Heusler晶體結構……………………..13 圖3-1、真空熔煉爐示意圖……………………….……………………15 圖3-2、實驗流程圖…………………………………………….………16 圖3-3、(a)真空電弧熔煉爐設備(b)水冷銅模……………...…………19 圖3-4、厚膜絕緣層製作流程.................................................................21 圖3-5、定義金屬導線流程圖…………………...……………….……23 圖3-6、熱電量測系統示意圖………………………….………………25 圖3-7、電壓差對溫度作圖決定Seebeck係數……..…………………26 圖3-8、直流式四線量測示意圖…………………………………….…27 圖3-9、Van der Pauw四點探針法………………….…………………28 圖3-10、霍爾效應量測裝置圖…..………..……………………………29 圖3-11、3ω方法所需結構示意圖………………….………..…………31 圖3-12、3ω樣本截面圖……………………………………..…………32 圖3-13、3ω樣本俯視圖…………………………..……………………32 圖3-14、ΔT2ω對ln(2ω)做圖…………..…………..……………………37 圖4-1、ZrTiSnSiNi合金Seebeck係數對溫度變化情形……...……..41 圖4-2、ZrTiSnSiNi合金電阻係數隨度溫度變化情形………………41 圖4-3、ZrTiSnSiNi合金功率因子隨溫度變化情形………………..…42 圖4-4、ZrTiSnSiNi合金熱處理前後之微結構……………………….43 圖4-5、ZrTiSnSiNi2合金能量散佈分析光譜儀(EDS)結果比較.……45 圖4-6、Zr0.5Ti0.5SiNi合金電阻係數隨溫度變化…………..……....…46 圖4-7、ZrTiSnSiNi2合金熱處理前後XRD比較…………………….47 圖4-8、ZrTiSnGeNi2合金Seebeck係數隨溫度變化情形…...………50 圖4-9、ZrTiSnGeNi2合金電阻係數隨溫度變化情形….……….……50 圖4-10、ZrTiSnGeNi2合金功率因子隨溫度變化情形..……..…..……51 圖4-11、ZrTiSnGeNi2合金相能量散佈分析光譜儀結果比較……..…52 圖4-12、ZrTiSnGeNi2合金熱處理前後XRD結果比較………..….…53 表目錄 表2-1、Half-Heusler三元合金熱電性質…………………………..…12 表3-1、多元合金之元素相關性質…………………………………….18 表4-1、ZrTiSnSiNi2熱處理前後Seebeck係數與電阻係數…….……39 表4-2、ZrTiSnGeNi2合金熱處理前後Seebeck係數與電阻係數比較..48 表4-3、具Half-Heusler結構之不同合金載子濃度...…………..…...…55 表4-4、具Half-Heusler結構之不同合金熱傳導係數……….……...…55 表4-5、多元合金與具Half-Heusler結構合金之熱電性質比較…..….56 表4-6、ZrTiSnSiNi2合金成分熱處理前後定量分析比較………..…..57 表4-7、ZrTiSnGeNi2合金成分定量分析…………………..……..…..58 表4-8、ZrTiSnSiNi2與Zr0.9Ti0.9Nb0.2SnSiNi2熱電性質比較…………59

    1. H. J. Goldsmid, in CRC Handbook of Thermoelectrics, D. M. Rowe Ed., Boca Raton, Florida, 1995 Chap. 3
    2. K. H. Huang, “A study on multicomponent alloy systems containing equal-mole elements”, Master thesis, Dept. Materials Science and Engineering, National Tsing-Hua University, June, 1996
    3. K. T. Rai, “Microstructures and properties of multi component alloy system with equal-mole elements”, Master thesis, Dept. Materials Science and Engineering, National Tsing-Hua University, June, 1998
    4. Y. H. Sheu, “A study on multicomponent alloy system with equal-mole FCC or BCC elements”, Master thesis, Dept. Materials Science and Engineering, National Tsing-Hua University, July, 2000
    5. Jien-Wei Yeh, Swe-Kai Chen, Su-Jien Lin, Jon-Yiew Gan, Tsung-Shune Chin, Tao-Tsung Shun, Chun-Huei Tsau, and Shou-Yi Chang, “Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concept and outcomes” Adv. Eng. Mater Vol 6, p299 (2004)
    6. G. S. Nolas, G. A. Slack, American Scientist, Vol. 89 (2001)
    7. G. A. Slack, in CRC Handbook of Thermoelectrics, edited by D. M. Rowe(Chemical Rubber, Boca Raton, FL, 1995),Chap. 34
    8. G. S. Nolas,etc. “A comparison of projected thermoelectric and thermionic refrigerators” J. Appl. Phys., 4066~4070(1999)
    9. Francis J. DiSalvo,“Thermoelectric cooling and power generation” Science. Vol. 285, 703 (1999)
    10. C.S. Lue, Y.-K. Kuo, “Thermoelectric properties of the semimetallic Heusler compounds Fe2-xV1+xM (M= Al, Ga)” Phys. Rev. B 66, 085121 (2002).
    11. B.C. Sales, D. Mandrus, and R.K. Williams,“Filled skutterudite antimonides: A new class of thermoelectric materials” Science 272, 1325 (1996).
    12. Heinrich Hohl, Art P Ramirez, Claudia Goldmann, Gabriele Ernst, Bernd W¨olfing and Ernst Bucher. J. “Efficient dopants for ZrNiSn-based thermoelectric materials”Phys.: Condens. Matter 11 1697–1709 (1999)
    13. Q. Shen, L. Chen, T. Goto and T. Hirai, J. Yang and G. P. Meisner, C. Uher “Effects of partial substitution of Ni by Pd on the thermoelectric propertiesof ZrNiSn-based half-Heusler compounds” Appl. Phys. Lett., 79, p4165 (2001)
    14. C. Uher, J. Yang, S. Hu, D. T. Morelli, and G. P. Meisner“ Transport properties of pure and doped MNiSn (M=Zr, Hf)” Phys. Rev. B, 59 p.8615, 1999
    15. K. Mastronardi, D. Young, C.-C. Wang, P. Khalifah, A. P. Ramirez, and R. J. Cava, “Antimonides with the half-Heusler structure: New thermoelectric materials” Appl. Phys. Lett., 74, p.1415, 1999
    16. Semiconductors and Semimetals, vol 70:Recent Trends in Thermoelectric Materials Research, Part Two,edited by Terry Tritt,Chap2 (2000)
    17. “Standard Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in Single-Crystal Semiconductors, ”ASTM Designation F76,Annual Book of ASTM Standards, Vol. 10.05 (2000).
    18. Cahill, D. G. (1990). "Thermal conductivity measurement from 30 to 750 K:the 3ω method." Review of Scientific Instruments 61(2).
    19. Cahill, D. G. (1997). "Heat transport in dielectric thin films and at solid-solid interfaces." Microscale Thermophysical Engineering 1: 85-109.
    20. Cahill, S.-M. L. a. D. G. (1997). "Heat transport in thin dielectric films." Journal of Applied Physics 81(6): 2590-2595.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE