簡易檢索 / 詳目顯示

研究生: 江孟庭
Chiang, Meng-Ting
論文名稱: 運用氣相電泳法及傅立葉紅外光譜分析技術開發混成式奈米材料與探討其界面化學之效應
Development of Hybrid Nanomaterials with Understanding of their Interfacial Phenomena using Gas-Phase Electrophoresis and Fourier Transform Infrared Spectroscopy
指導教授: 蔡德豪
Tsai, De-Hao
口試委員: 呂世源
Lu, Shih-Yuan
潘詠庭
Pan, Yung-Tin
李岱洲
Lee, Tai-Chou
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 104
中文關鍵詞: 電移動度分析儀傅立葉轉換紅外線光譜儀混成式奈米材料玻尿酸金奈米粒子銀碳混成式奈米粒子團簇電容去離子技術
外文關鍵詞: inductively-coupled plasma
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以氣相奈米粒子電移動度分析儀 (differential mobility analyzer,DMA) 及傅立葉轉換紅外線光譜儀 (Fourier transform infrared spectroscope,FTIR) 兩種分析儀器為基礎,建立一定量定性分析技術與方法,藉由量測混成式奈米粒子的電移動度粒徑分佈、數量濃度及成分組成等性質來進行混成式奈米材料之開發及其膠體與界面化學之研究,透過這些資訊可進一步探討配體與奈米粒子間的吸脫附現象與優化作為生醫及能環領域應用之相關製備條件。
    首先,在本研究的第一部分中,我們利用靜電自組裝法製備玻尿酸-金奈米粒子混成式奈米材料,並成功結合DMA及FTIR建立一套定量定性分析技術與方法來開發玻尿酸-金奈米粒子,並鑑定玻尿酸在牛血清蛋白-金奈米粒子表面的界面化學之效應。我們藉由建立感應耦合電漿質譜儀 (inductively coupled plasma-mass spectrometer,ICP-MS) 與電噴灑式氣相奈米粒子電移動度分析儀 (electrospray- differential mobility analyzer,ES-DMA)之整合技術,可以成功分析玻尿酸、牛血清蛋白及金奈米粒子之物理尺寸、數量與質量濃度以及聚集程度,而在pH 3環境下,當玻尿酸濃度小於5 × 10-3 μmol/L時,玻尿酸在牛血清蛋白-金奈米粒子之表面吸附密度與玻尿酸濃度呈正相關,且平衡吸附常數大約為4 × 105 L/mol。接著,玻尿酸受到酸鹼度與酵素誘導影響在牛血清蛋白-金奈米粒子表面脫落現象也成功的藉由ES-DMA以及衰減全反射式傅立葉轉換紅外線光譜儀 (attenuated total reflectance-Fourier transform infrared spectroscope,ATR-FTIR) 鑑定。在沒有添加酵素,環境酸鹼度從pH 3調至pH 7時,玻尿酸的脫落速率常數至少增加了3.7倍,而當加入酵素後,玻尿酸的脫落速率常數更進一步增加了2.0倍以上。研究成果顯示經由定量分析證明,透過改變水相中奈米膠體材料之表面化學性質以合成玻尿酸功能性奈米材料,對於各種玻尿酸衍生物應用在生醫領域有很大的幫助。
    II
    在本研究的第二部分,我們以氣溶膠合成法為基礎,結合DMA及FTIR之分析技術與方法來開發銀碳混成式奈米粒子團簇 (Ag-C-NPC),並即時地定量分析其界面化學之效應,並探討Ag-C-NPC應用於電容去離子技術時的性能表現。首先,我們成功的以氣相誘導自組裝法製備Ag-C-NPC,使銀奈米粒子均勻地裝飾在碳奈米粒子團簇上,而其粒徑大小、數量濃度及結構中的成分比例等界面化學性質,都可以藉由DMA及程序升溫傅立葉紅外光譜儀 (temperature-programmed Fourier transform infrared spectroscope,TP-FTIR) 即時鑑定,並透過調整前驅物濃度來控制Ag-C-NPC之特性。研究結果顯示,在碳奈米粒子團簇中添加銀奈米粒子,改善了以碳基材作為CDI電極材料時的離子吸附容量與充放電循環可逆性,達到了相當高的去鹽能力,相當於每克電極重可以去除17.5毫克溶液中的鹽。本研究驗證了結合氣溶膠合成法與即時性定量分析系統開發Ag-C-NPC並提升CDI性能表現之概念,透過此鑑定技術所得到之界面化學資訊,可以調控Ag-C-NPC之材料性質以優化其作為CDI電極時之離子吸附容量及循環穩定性。
    本研究建立了一個可調控且快速的合成方法,並結合DMA及FTIR建立一套分析技術與方法開發混成式奈米材料,得到其尺寸大小、表面結構、數量與質量濃度、配體吸脫附現象及成分組成等特性,透過此鑑定技術充分了解混成式奈米材料界面化學效應之機制,對於開發混成式奈米材料與研究其配方化學以及在生醫與能環領域應用之優化都有很大的幫助。


    In this work, we demonstrate a real-time characterization method using differential mobility analyses coupled to Fourier-transform infrared spectroscopy (DMA/FTIR) for the development of hybrid nanomaterials for biomedical and energy & environmental applications. The interfacial phenomena of hybrid nanomaterials, including mobility size distribution, number concentrations and chemical composition can be characterized by DMA/FTIR for the performance optimization.
    In the first part of this work, a facile electrostatic-directed assembly method is used for the fabrication of hyaluronic acid (HA)-functionalized gold nanoparticle (AuNP). Here, the assembly-disassembly of hyaluronic acid (HA) with bovine serum albumin-conjugated gold nanoparticle (BSA-AuNP) was demonstrated using orthogonal characterization approaches: electrospray-differential mobility analysis (ES-DMA) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Physical sizes, number and mass concentrations, and degrees of aggregation of HA, BSA and AuNP were successfully quantified using the ES-DMA hyphenated with inductively coupled plasma mass spectrometry (ICP-MS). Surface packing density of HA on the BSA-AuNP was shown to be proportional to the concentration of HA (CHA) when CHA ≤ 5 × 10-3 μmol/L, and the equilibrium binding constant of HA on the BSA-AuNP was identified as ≈ 4 × 105 L/mol at pH 3. The pH-sensitive and enzyme-induced detachments of HA from BSA-AuNP were both successfully characterized by using ES-DMA and ATR-FTIR. In the absence of enzymatic catalysis, the rate constant of HA detachment (k) was shown to increase by at least 3.7 times via adjusting the environmental acidity from pH 3 to pH 7. A significant enzyme-induced HA detachment was identified at pH 7, showing a remarkably increase of k by at least 2.0 times in the presence of enzyme. The work provides a proof of concept for assembly of
    IV
    HA-based hybrid colloidal nanomaterials through the tuning of surface chemistry in the aqueous phase with the ability of in-situ quantitative characterization, which has shown the promise for the development of a variety of HA-derivative biomedical applications (e.g., drug delivery).
    In the second part of this work, an aerosol-based synthetic approach, in combination with a real-time characterization method using differential mobility analyses coupled to temperature-programmed Fourier transform infrared spectroscopy (DMA/TP-FTIR), was demonstrated for the development of silver-carbon hybrid nanoparticle cluster (Ag-C-NPC). Here, silver-decorated carbon nanoparticle clusters (Ag-C-NPCs) were fabricated via gas-phase evaporation-induced self-assembly (EISA), which are used as electrode material of capacitive deionization of salt-containing wastewater. Physical size, number concentration, and compositions of the Ag-C-NPC were shown to be tunable and successfully characterized directly in the aerosol state on a quantitative basis using the DMA/TP-FTIR. The enhancements of deionization capacity and the charging/discharging reversibility are achievable by the addition of Ag NP. A remarkably high salt adsorption capacity of the Ag-C-NPC was achievable (17.5 mg of salt per gram of electrode material). This work provides a proof of concept of using the aerosol-based synthesis with the support of in-situ characterization for the development of Ag-C nanocomposite clusters with high CDI performance. The method also shows promise for the tuning of the material properties of Ag-C-NPC for the optimization of the CDI capacity and cyclic stability useful for a variety of the water desalination applications (e.g., brackish water).
    This work demonstrates a controlled and facile synthetic approach with the support of in-situ aerosol-phase characterization to develop hybrid nanomaterials. The mechanistic understanding correlated to their interfacial phenomena is useful for the
    V
    formation of hybrid nanomaterials and the performance optimization in the biomedical and energy & environmental applications.

    摘 要 I Abstract III 目 錄 VI 圖目錄 VIII 表目錄 XI 第1章 緒論 1 1-1 功能性奈米材料 1 1-2 混成式奈米材料 3 1-3 奈米材料分析技術與方法的重要性 5 1-4 研究方法與目的 7 第2章 實驗方法 12 2-1 實驗藥品 12 2-2 樣品製備方式 14 2-2.1 膠體溶液之配製方法 14 2-2.2 以氣溶膠合成法製備銀碳混成式奈米粒子團簇 18 2-2.3 電容去離子技術之電極製備 20 2-3 實驗儀器 21 2-4 實驗儀器原理及方法 23 2-4.1 氣相奈米粒子電移動度分析儀 (DMA) 23 2-4.2 電噴灑式氣相奈米粒子電移動度分析儀連接感應耦合電漿質譜法 (ES-DMA/ICP-MS) 29 2-4.3 傅立葉轉換紅外光譜儀 (FTIR) 30 2-4.4 界面電位分析儀 (Zeta potential analyzer) 34 2-4.5 熱重分析儀 (TGA) 36 2-4.6 X光繞射儀 (XRD) 37 2-4.7 掃描式電子顯微鏡 (SEM) 38 2-4.8 程序升溫傅立葉紅外光譜儀 (TP-FTIR) 39 2-4.9 電化學分析儀 40 第3章 結果與討論 41 3-1 玻尿酸在金奈米粒子上的組裝及脫落分析 41 3-1.1 玻尿酸、牛血清蛋白及金奈米粒子膠體溶液之定量分析 41 3-1.2 牛血清蛋白-金奈米粒子之組裝 45 3-1.3 玻尿酸-牛血清蛋白-金奈米粒子之靜電自組裝 51 3-1.4 以ES-DMA分析酵素誘導玻尿酸之脫落現象 59 3-1.5 以ATR-FTIR分析酵素誘導玻尿酸之脫落現象 64 3-2 開發銀碳混成式奈米粒子團簇應用於電容去離子技術 69 3-2.1 鑑定碳奈米粒子膠體溶液 69 3-2.2 決定銀前驅物之熱分解溫度及Ag-C-NPC中碳奈米粒子之完全氧化溫度 72 3-2.3 鑑定銀碳混成式奈米粒子團簇 74 3-2.4 銀碳混成式奈米粒子團簇在電容去離子技術之應用 84 第4章 結論 92 第5章 未來展望 94 參考文獻 97

    1. Lue, J. T. Physical properties of nanomaterials. Encyclopedia of nanoscience nanotechnology 2007, 10 (1), 1-46.
    2. Cai, Z.; Zhang, H.; Wei, Y.; Cong, F. Hyaluronan-inorganic nanohybrid materials for biomedical applications. Biomacromolecules 2017, 18 (6), 1677-1696.
    3. Lee, M. Y.; Yang, J. A.; Jung, H. S.; Beack, S.; Choi, J. E.; Hur, W.; Koo, H.; Kim, K.; Yoon, S. K.; Hahn, S. K. Hyaluronic acid–gold nanoparticle/interferon α complex for targeted treatment of hepatitis C virus infection. ACS Nano 2012, 6 (11), 9522-9531.
    4. Lee, S. M.; Tsai, D. H.; Hackley, V. A.; Brechbiel, M. W.; Cook, R. F. Surface-engineered nanomaterials as X-ray absorbing adjuvant agents for Auger-mediated chemo-radiation. Nanoscale 2013, 5 (12), 5252-5256.
    5. Liu, J.; Peng, Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomaterialia 2017, 55, 13-27.
    6. Tan, J.; Cho, T. J.; Tsai, D. H.; Liu, J.; Pettibone, J. M.; You, R.; Hackley, V. A.; Zachariah, M. R. Surface modification of cisplatin-complexed gold nanoparticles and its influence on colloidal stability, drug loading, and drug release. Langmuir 2018, 34 (1), 154-163.
    7. Tsai, D. H.; Cho, T. J.; DelRio, F. W.; Taurozzi, J.; Zachariah, M. R.; Hackley, V. A. Hydrodynamic fractionation of finite size gold nanoparticle clusters. Journal of the American Chemical Society 2011, 133 (23), 8884-8887.
    8. Xu, C.; Yang, D.; Mei, L.; Li, Q.; Zhu, H.; Wang, T. Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Applied Materials & Interfaces 2013, 5 (24), 12911-12920.
    9. Mantri, Y.; Jokerst, J. V. Engineering Plasmonic Nanoparticles for Enhanced Photoacoustic Imaging. ACS Nano 2020.
    10. Kim, T.; Zhang, Q.; Li, J.; Zhang, L.; Jokerst, J. V. A gold/silver hybrid nanoparticle for treatment and photoacoustic imaging of bacterial infection. ACS Nano 2018, 12 (6), 5615-5625.
    11. Cho, T. J.; MacCuspie, R. I.; Gigault, J.; Gorham, J. M.; Elliott, J. T.; Hackley, V. A. Highly stable positively charged dendron-encapsulated gold nanoparticles. Langmuir 2014, 30 (13), 3883-3893.
    12. Cao Milan, R.; Liz Marzan, L. M. Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opinion on Drug Delivery 2014, 11 (5), 741-752.
    13. Tsai, D. H.; Elzey, S.; DelRio, F. W.; Keene, A. M.; Tyner, K. M.; Clogston, J. D.; MacCuspie, R. I.; Guha, S.; Zachariah, M. R.; Hackley, V. A. Tumor necrosis factor interaction with gold nanoparticles. Nanoscale 2012, 4 (10), 3208-3217.
    14. Karakocak, B. B.; Liang, J.; Biswas, P.; Ravi, N. Hyaluronate coating enhances the delivery and biocompatibility of gold nanoparticles. Carbohydrate Polymers 2018, 186, 243-251.
    15. Kalfa, A.; Shapira, B.; Shopin, A.; Cohen, I.; Avraham, E.; Aurbach, D. Capacitive deionization for wastewater treatment: Opportunities and challenges. Chemosphere 2020, 241, 125003.
    16. Yoon, H.; Lee, J.; Kim, S.; Yoon, J. Review of concepts and applications of electrochemical ion separation (EIONS) process. Separation and Purification Technology 2019, 215, 190-207.
    17. Liu, Y.; Nie, C.; Liu, X.; Xu, X.; Sun, Z.; Pan, L. Review on carbon-based composite materials for capacitive deionization. RSC Advances 2015, 5 (20), 15205-15225.
    18. Yeh, C.-L.; Hsi, H.-C.; Li, K.-C.; Hou, C.-H. Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination 2015, 367, 60-68.
    19. Hsu, C.-C.; Tu, Y.-H.; Yang, Y.-H.; Wang, J.-A.; Hu, C.-C. Improved performance and long-term stability of activated carbon doped with nitrogen for capacitive deionization. Desalination 2020, 481, 114362.
    20. Seo, S.-J.; Jeon, H.; Lee, J. K.; Kim, G.-Y.; Park, D.; Nojima, H.; Lee, J.; Moon, S.-H. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Research 2010, 44 (7), 2267-2275.
    21. Cheng, Y.; Hao, Z.; Hao, C.; Deng, Y.; Li, X.; Li, K.; Zhao, Y. A review of modification of carbon electrode material in capacitive deionization. RSC Advances 2019, 9 (42), 24401-24419.
    22. Volfkovich, Y. M. Capacitive deionization of water (a review). Russian Journal of Electrochemistry 2020, 56, 18-51.
    23. Zhao, X.; Wei, H.; Zhao, H.; Wang, Y.; Tang, N. Electrode materials for capacitive deionization: A review. Journal of Electroanalytical Chemistry 2020, 114416.
    24. Poon, Z.; Lee, J. B.; Morton, S. W.; Hammond, P. T. Controlling in vivo stability and biodistribution in electrostatically assembled nanoparticles for systemic delivery. Nano Letters 2011, 11 (5), 2096-2103.
    25. Van Haute, D.; Liu, A. T.; Berlin, J. M. Coating metal nanoparticle surfaces with small organic molecules can reduce nonspecific cell uptake. ACS Nano. 2018, 12 (1), 117-127.
    26. Zhang, M.; Guo, X.; Wang, M.; Liu, K. Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges. Journal of Controlled Release 2020.
    27. Fang, R. H.; Jiang, Y.; Fang, J. C.; Zhang, L. J. B. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 2017, 128, 69-83.
    28. Louie, S. M.; Gorham, J. M.; McGivney, E. A.; Liu, J.; Gregory, K. B.; Hackley, V. A. Photochemical transformations of thiolated polyethylene glycol coatings on gold nanoparticles. Environmental Science: Nano 2016, 3 (5), 1090-1102.
    29. Shin, H. W.; Sohn, H.; Jeong, Y. H.; Lee, S. M. Construction of Paramagnetic Manganese-Chelated Polymeric Nanoparticles Using Pyrene-End-Modified Double-Hydrophilic Block Copolymers for Enhanced Magnetic Resonance Relaxivity: A Comparative Study with Cisplatin Pharmacophore. Langmuir 2019, 35 (19), 6421-6428.
    30. Lee, S. M. Labile incorporation of cholesterol-terminated poly (acrylic acid) for the facile surface-modification of lipid vesicles. Langmuir 2017, 33 (27), 6751-6759.
    31. Kumar, C. S.; Raja, M.; Sundar, D. S.; Antoniraj, M. G.; Ruckmani, K. Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells). Carbohydrate Polymers 2015, 128, 63-74.
    32. Rojo, J.; Díaz, V.; de la Fuente, J. M.; Segura, I.; Barrientos, A. G.; Riese, H. H.; Bernad, A.; Penadés, S. Gold glyconanoparticles as new tools in antiadhesive therapy. ChemBioChem 2004, 5 (3), 291-297.
    33. Sasidharan, A.; Monteiro‐Riviere, N. A. Biomedical applications of gold nanomaterials: opportunities and challenges. WIREs Nanomed Nanobiotechnol 2015, 7 (6), 779-796.
    34. Sunasee, R.; Adokoh, C. K.; Darkwa, J.; Narain, R. Therapeutic potential of carbohydrate-based polymeric and nanoparticle systems. Expert Opinion on Drug Delivery 2014, 11 (6), 867-884.
    35. Nolting, B.; Yu, J. J.; Liu, G. y.; Cho, S. J.; Kauzlarich, S.; Gervay Hague, J. Synthesis of gold glyconanoparticles and biological evaluation of recombinant Gp120 interactions. Langmuir 2003, 19 (16), 6465-6473.
    36. Lee, S. Y.; Kang, M. S.; Jeong, W. Y.; Han, D. W.; Kim, K. S. Hyaluronic Acid-Based Theranostic Nanomedicines for Targeted Cancer Therapy. Cancers 2020, 12 (4), 940.
    37. Yang, Y.; Wang, S.; Wang, C.; Tian, C.; Shen, Y.; Zhu, M. Engineered Targeted Hyaluronic Acid–Glutathione‐Stabilized Gold Nanoclusters/Graphene Oxide–5‐Fluorouracil as a Smart Theranostic Platform for Stimulus‐Controlled Fluorescence Imaging‐Assisted Synergetic Chemo/Phototherapy. Chemistry an asian journal 2019, 14 (9), 1418-1423.
    38. Adokoh, C. K.; Obuah, C.; Kinfe, H. H.; Zinyemba, O.; Darkwa, J. Novel bio-friendly and non-toxic thiocarbohydrate stabilizers of gold nanoparticles. New Journal of Chemistry 2015, 39 (7), 5249-5258.
    39. Uz, M.; Bulmus, V.; Alsoy Altinkaya, S. Effect of PEG grafting density and hydrodynamic volume on gold nanoparticle–cell interactions: An investigation on cell cycle, apoptosis, and DNA damage. Langmuir 2016, 32 (23), 5997-6009.
    40. Cho, W.-S.; Cho, M.; Jeong, J.; Choi, M.; Cho, H.-Y.; Han, B. S.; Kim, S. H.; Kim, H. O.; Lim, Y. T.; Chung, B. H. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicology applied pharmacology 2009, 236 (1), 16-24.
    41. Sharma, G.; Kumar, D.; Kumar, A.; Ala'a, H.; Pathania, D.; Naushad, M.; Mola, G. T. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: a review. Materials Science Engineering: C 2017, 71, 1216-1230.
    42. Liu, Y.-H.; Hsi, H.-C.; Li, K.-C.; Hou, C.-H. Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization. ACS Sustainable Chemistry Engineering 2016, 4 (9), 4762-4770.
    43. Shih, Y.-J.; Dong, C.-D.; Huang, Y.-H.; Huang, C. Loofah-derived activated carbon supported on nickel foam (AC/Ni) electrodes for the electro-sorption of ammonium ion from aqueous solutions. Chemosphere 2020, 242, 125259.
    44. Gao, L.; Dong, Q.; Bai, S.; Liang, S.; Hu, C.; Qiu, J. Graphene Oxide-Tuned MoS2 with an Expanded Interlayer for Efficient Hybrid Capacitive Deionization. ACS Sustainable Chemistry Engineering 2020, 8 (26), 9690-9697.
    45. Wu, Z.-S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H.-M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS nano 2010, 4 (6), 3187-3194.
    46. Wang, H.; Cui, L.-F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. Mn3O4− graphene hybrid as a high-capacity anode material for lithium ion batteries. Journal of the American Chemical Society 2010, 132 (40), 13978-13980.
    47. Zhu, X.; Zhu, Y.; Murali, S.; Stoller, M. D.; Ruoff, R. S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS nano 2011, 5 (4), 3333-3338.
    48. Theerthagiri, J.; Senthil, R.; Arunachalam, P.; Madhavan, J.; Buraidah, M.; Santhanam, A.; Arof, A. Synthesis of various carbon incorporated flower-like MoS 2 microspheres as counter electrode for dye-sensitized solar cells. Journal of Solid State Electrochemistry 2017, 21 (2), 581-590.
    49. Tu, Y.-H.; Liu, C.-F.; Wang, J.-A.; Hu, C.-C. Construction of an inverted-capacitive deionization system utilizing pseudocapacitive materials. Electrochemistry Communications 2019, 104, 106486.
    50. Tsai, D. H.; DelRio, F. W.; MacCuspie, R. I.; Cho, T. J.; Zachariah, M. R.; Hackley, V. A. Competitive adsorption of thiolated polyethylene glycol and mercaptopropionic acid on gold nanoparticles measured by physical characterization methods. Langmuir 2010, 26 (12), 10325-10333.
    51. Tsai, D. H.; DelRio, F. W.; Keene, A. M.; Tyner, K. M.; MacCuspie, R. I.; Cho, T. J.; Zachariah, M. R.; Hackley, V. A. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 2011, 27 (6), 2464-2477.
    52. Wang, H. L.; Huang, C. P.; Su, C. H.; Tsai, D. H. A facile quantification of hyaluronic acid and its crosslinking using gas-phase electrophoresis. Analytical and Bioanalytical Chemistry 2019, 411 (7), 1443-1451.
    53. Guha, S.; Li, M.; Tarlov, M. J.; Zachariah, M. R. Electrospray–differential mobility analysis of bionanoparticles. Trends in biotechnology 2012, 30 (5), 291-300.
    54. Tsai, D.-H.; Shelton, M. P.; DelRio, F. W.; Elzey, S.; Guha, S.; Zachariah, M. R.; Hackley, V. A. Quantifying dithiothreitol displacement of functional ligands from gold nanoparticles. Analytical bioanalytical chemistry 2012, 404 (10), 3015-3023.
    55. Lin, H.; Long, J.; Gu, Q.; Zhang, W.; Ruan, R.; Li, Z.; Wang, X. In situ IR study of surface hydroxyl species of dehydrated TiO 2: towards understanding pivotal surface processes of TiO 2 photocatalytic oxidation of toluene. Physical Chemistry Chemical Physics 2012, 14 (26), 9468-9474.
    56. Zhang, Q.; Liang, J.; Yun, S. L. J.; Liang, K.; Yang, D.; Gu, Z. Recent advances in improving tumor-targeted delivery of imaging nanoprobes. Biomaterials Science 2020, 8 (15), 4129-4146.
    57. Neuman, M. G.; Nanau, R. M.; Oruña-Sanchez, L.; Coto, G. Hyaluronic acid and wound healing. Pharmacy Pharmaceutical Sciences 2015, 18 (1), 53-60.
    58. Burdick, J. A.; Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 2011, 23 (12), H41-H56.
    59. Putra, R. P.; Ikumura, Y.; Horino, H.; Hori, A.; Rzeznicka, I. I. Adsorption and Conformation of Bovine Serum Albumin with Blue-Emitting Gold Nanoclusters at the Air/Water and Lipid/Water Interfaces. Langmuir 2019, 35 (50), 16576-16582.
    60. Tsai, D. H.; Davila Morris, M.; DelRio, F. W.; Guha, S.; Zachariah, M. R.; Hackley, V. A. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance–fourier transform infrared spectroscopy. Langmuir 2011, 27 (15), 9302-9313.
    61. Tsai, D. H.; Cho, T. J.; Elzey, S. R.; Gigault, J. C.; Hackley, V. A. Quantitative analysis of dendron-conjugated cisplatin-complexed gold nanoparticles using scanning particle mobility mass spectrometry. Nanoscale 2013, 5 (12), 5390-5395.
    62. Elzey, S.; Tsai, D. H.; Lee, L. Y.; Winchester, M. R.; Kelley, M. E.; Hackley, V. A. Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Analytical and Bioanalytical Chemistry 2013, 405 (7), 2279-2288.
    63. Tan, J.; Liu, J.; Li, M.; El Hadri, H.; Hackley, V. A.; Zachariah, M. R. Electrospray-differential mobility hyphenated with single particle inductively coupled plasma mass spectrometry for characterization of nanoparticles and their aggregates. Analytical Chemistry 2016, 88 (17), 8548-8555.
    64. Bayer, I. S. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020, 25 (11), 2649.
    65. Pasta, M.; Wessells, C. D.; Cui, Y.; La Mantia, F. A desalination battery. Nano letters 2012, 12 (2), 839-843.
    66. Tang, K.; Hong, T. Z. X.; You, L.; Zhou, K. Carbon–metal compound composite electrodes for capacitive deionization: synthesis, development and applications. Journal of Materials Chemistry A 2019, 7 (47), 26693-26743.
    67. Srimuk, P.; Su, X.; Yoon, J.; Aurbach, D.; Presser, V. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nature Reviews Materials 2020, 5 (7), 517-538.
    68. Yoon, H.; Lee, J.; Kim, S.; Yoon, J. Hybrid capacitive deionization with Ag coated carbon composite electrode. Desalination 2017, 422, 42-48.
    69. Cai, P.-F.; Su, C.-J.; Chang, W.-T.; Chang, F.-C.; Peng, C.-Y.; Sun, I.-W.; Wei, Y.-L.; Jou, C.-J.; Wang, H. P. Capacitive deionization of seawater effected by nano Ag and Ag@ C on graphene. Marine pollution bulletin 2014, 85 (2), 733-737.
    70. Lai, C.-S.; Chen, Y.-C.; Wang, H.-F.; Ho, H.-C.; Ho, R.-M.; Tsai, D.-H. Gas-phase self-assembly of uniform silica nanostructures decorated and doped with silver nanoparticles. Nanotechnology 2016, 28 (3), 035602.
    71. Tsai, T.-Y.; Wang, H.-L.; Chen, Y.-C.; Chang, W.-C.; Chang, J.-W.; Lu, S.-Y.; Tsai, D.-H. Noble metal-titania hybrid nanoparticle clusters and the interaction to proteins for photo-catalysis in aqueous environments. Journal of colloid interface science 2017, 490, 802-811.
    72. Hsu, S.-Y.; Lin, S.-C.; Wang, J.-A.; Hu, C.-C.; Ma, C.-C. M.; Tsai, D.-H. Aerosol-based synthesis of silsesquioxane-graphene oxide and graphene-manganese oxide nanocomposites for high-performance asymmetric supercapacitors. Electrochimica Acta 2019, 296, 427-437.
    73. Sun, Y.-A.; Chen, L.-T.; Hsu, S.-Y.; Hu, C.-C.; Tsai, D.-H. Silver nanoparticles-decorating manganese oxide hybrid nanostructures for supercapacitor applications. Langmuir 2019, 35 (44), 14203-14212.
    74. Wiedensohler, A. An approximation of the bipolar charge distribution for particles in the submicron size range. Journal of aerosol science 1988, 19 (3), 387-389.
    75. Elzey, S.; Tsai, D.-H.; Lee, L. Y.; Winchester, M. R.; Kelley, M. E.; Hackley, V. A. Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Analytical bioanalytical chemistry 2013, 405 (7), 2279-2288.
    76. Chang, W.-C.; Cheng, S.-C.; Chiang, W.-H.; Liao, J.-L.; Ho, R.-M.; Hsiao, T.-C.; Tsai, D.-H. Quantifying surface area of nanosheet graphene oxide colloid using a gas-phase electrostatic approach. Analytical chemistry 2017, 89 (22), 12217-12222.
    77. Tai, J.-T.; Lai, Y.-C.; Yang, J.-H.; Ho, H.-C.; Wang, H.-F.; Ho, R.-M.; Tsai, D.-H. Quantifying nanosheet graphene oxide using electrospray-differential mobility analysis. Analytical chemistry 2015, 87 (7), 3884-3889.
    78. Ammann, A. A. Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool. Journal of mass spectrometry 2007, 42 (4), 419-427.
    79. Tsai, D.-H.; Davila-Morris, M.; DelRio, F. W.; Guha, S.; Zachariah, M. R.; Hackley, V. A. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance–Fourier transform infrared spectroscopy. Langmuir 2011, 27 (15), 9302-9313.
    80. Hunter, R. J. Zeta potential in colloid science: principles and applications. Academic press: 2013; Vol. 2.
    81. Matusiak, J.; Grządka, E. Stability of colloidal systems-a review of the stability measurements methods. Annales Universitatis Mariae Curie-Sklodowska, sectio AA–Chemia 2017, 72 (1), 33.
    82. Berg, J. C. An introduction to interfaces & colloids: the bridge to nanoscience. World Scientific: 2010.
    83. Chen, B.; Wang, Y.; Chang, Z.; Wang, X.; Li, M.; Liu, X.; Zhang, L.; Wu, Y. Enhanced capacitive desalination of MnO 2 by forming composite with multi-walled carbon nanotubes. RSC advances 2016, 6 (8), 6730-6736.
    84. Michelacci, Y. M.; Dietrich, C. P. A comparative study between a chondroitinase B and a chondroitinase AC from Flavobacterium heparinum: Isolation of a chondroitinase AC-susceptible dodecasaccharide from chondroitin sulphate B. Biochemical Journal 1975, 151 (1), 121-129.
    85. Shih, Y.-J.; Dong, C.-D.; Huang, Y.-H.; Huang, C. Electro-sorption of ammonium ion onto nickel foam supported highly microporous activated carbon prepared from agricultural residues (dried Luffa cylindrica). Science of The Total Environment 2019, 673, 296-305.
    86. Wang, Z.; Xu, X.; Kim, J.; Malgras, V.; Mo, R.; Li, C.; Lin, Y.; Tan, H.; Tang, J.; Pan, L. Nanoarchitectured metal–organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization. Materials Horizons 2019, 6 (7), 1433-1437.
    87. Ding, M.; Shi, W.; Guo, L.; Leong, Z. Y.; Baji, A.; Yang, H. Y. Bimetallic metal–organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination. Journal of Materials Chemistry A 2017, 5 (13), 6113-6121.
    88. Liu, Y.; Xu, X.; Wang, M.; Lu, T.; Sun, Z.; Pan, L. Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chemical Communications 2015, 51 (60), 12020-12023.
    89. Lin, P.; Liao, M.; Yang, T.; Sheng, X.; Wu, Y.; Xu, X. Modification of Metal-Organic Framework-Derived Nanocarbons for Enhanced Capacitive Deionization Performance: A Mini-Review. Frontiers in chemistry 2020, 8.
    90. Liu, N.-L.; Dutta, S.; Salunkhe, R. R.; Ahamad, T.; Alshehri, S. M.; Yamauchi, Y.; Hou, C.-H.; Wu, K. C.-W. ZIF-8 derived, nitrogen-doped porous electrodes of carbon polyhedron particles for high-performance electrosorption of salt ions. Scientific reports 2016, 6 (1), 1-7.

    QR CODE