簡易檢索 / 詳目顯示

研究生: 洪裕峰
Hong, Yu-Fong
論文名稱: 由穿隧電子所引發之氨吸附基轉變
Transformation of adsorbed-NH2 by tunneling electrons
指導教授: 羅榮立
Lo, Rong-Li
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 66
中文關鍵詞: 矽(111)亞穩穿隧電子非彈性解離
外文關鍵詞: Si(111), NH3, metastable, tunnel, electron, inelastic, dissociate
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氨分子在室溫Si ( 111 )-7 × 7表面產生解離吸附,分裂產物H2N吸附於矽adatom或矽rest atom上。H2N被證實吸附在矽adatom的形成機率是12.1 %;且在樣品負偏壓掃描下,H2N會塞入矽adatom與下層矽原子之間,產生亞穩態,若進一步掃描,亞穩態會解離出一個氫原子。本實驗便是以此為根據,希望藉由非彈性電子穿隧,估計H2N在轉變過程中,是需要幾個電子來達成;同時也仔細觀察亞穩態在兩種偏壓掃描下的變動情形。
      由於實驗是在non in-situ下進行,所以先對樣品表面缺陷數量作估計。在高溫熱處理Si ( 111 )- 7 × 7後五小時左右,表面的single defects所佔其半晶胞的比率約是5 %。曝上氨氣後,使用下面的掃描條件觀察轉換事件:正偏壓1.5 V,負偏壓2.0 V,穿隧電流0.05至0.3 nA,掃描時間大約105 s,面積是35 × 35 nm2 ;固定電壓、時間與面積,只改變穿隧電流因素下,分別求出H2N吸附在矽adatom的初態轉變為亞穩態的穿隧電子數目為1個,以及從亞穩態進一步解離出氫原子的末態所需穿隧電子數目亦為1個。從初態經由亞穩態到末態的整個轉變過程是兩個電子事件。
      此外在正負偏壓作用下,亞穩態皆有機率回到初態和轉變為末態。原因是不同於初態的電子態密度,僅在費米能階1 eV以下才有大量態密度,亞穩態的電子態密度,在費米能階以上及以下皆存在,同時其能量又比初態及末態都還來得高。基於此兩種情況,解釋了為何初態僅在負偏壓作用才會有反轉產生,而亞穩態卻在正偏壓及負偏壓作用下皆有回到初態及轉變為末態的機會。


    An NH3 molecule is dissociatively adsorbed on Si ( 111 )-7 × 7 at room temperature. The dissociated fragment NH2 can be adsorbed on top of either silicon adatom or rest atom. The probability for NH2 to be adsorbed on top of adatom is confirmed to be 12.1 %. Under the scanning of negative sample biases, the atop adsorbed-H2N can be displaced into the backbond of adatom, forming a metastable state. With further scanning of negative sample biases, the metastable state will be transformed into a final and stable state by liberating an H atom. Based on these observations, we want to know how many inelastic tunneling electrons are needed to induce the transformations in our experiments and, in particular, to study the changes of metastable state under the scanning of both polarities of sample bias.
    Since our experiments were performed non in-situ, therefore, we first estimated the defect density on Si ( 111 )-7 × 7 surface. About five hours later to the annealing treatment of sample, we found the density of single defect (one dark adatom in a half cell) was about 5%. After the dosage of NH3, we used the following scanning conditions to acquire STM images: 1.5 V and □ 2.0 V of sample bias, 0.05 to 0.3 nA of tunneling current, frame time of about 105 s, and scanning area of 35 × 35 nm2. By varying the tunneling current and fixing the other conditions, we found that the number of tunneling electron to induce both transformations, the initial state (adatom-adsorbed NH2) to metastable state and metastable state to final state, is unit. In other words, the whole transformation from initial state to final state is a two-electron process.
    On the other hand, we also observed that metastable state has the probability to return back to the initial state or to transform into the final state under the scanning of positive or negative sample bias. This can be interpreted by their potential energies and DOS structures near Fermi level. The initial state only has intense occupied DOS below 1 eV and almost has no unoccupied DOS from 0 to 3 eV. The metastable state has DOS on the both sides of Fermi level, but its potential energy is higher than the other states. These facts explain what we observed in our experiments very well.

    目錄 第一章 緒論 ..............................................1 1.1 前言...........................................1 1.2 氮化矽 ( Silicon Nitride ) 簡介................3 1.2.1 形成....................................3 1.2.2 應用....................................3 1.3 研究動機.......................................5 1.4 Si ( 111 )-7 × 7 ..............................5 1.4.1 簡介....................................5 1.4.2 重構....................................6 1.5 氨在Si ( 111 )-7 × 7表面上吸附原理概述.........9 1.6 非彈性電子穿隧................................11 1.7 氨吸附基在adatom的轉變及實驗議題............. 12 第二章 實驗儀器原理與介紹................................15 2.1 掃瞄探針顯微術 ( Scanning Probe Microscopy,SPM ) ................................15 2.1.1 前言................................. 15 2.1.2 STM操作原理與架構.................... 17 2.2 真空幫浦介紹..................................21 2.3 實驗儀器......................................23 第三章 實驗準備與過程....................................24 3.1 實驗準備......................................24 3.1.1 STM electrical contact簡述與問題..... 24 3.1.2 破真空................................25 3.1.3 彈片校正與第一次STM測試...............26 3.1.4 彈簧懸吊系統校正與第二次STM測試.......28 3.1.5 機台烘烤..............................30 3.1.6 探針備製..............................32 3.1.7 樣品準備..............................34 3.2 實驗過程......................................35 3.2.1 樣品加熱退火..........................35 3.2.2 表面缺陷統計..........................36 3.2.3 曝氨氣................................41 3.2.4 氨吸附基轉變..........................43 第四章 實驗結果與討論....................................49 4.1 DD* ( □ GB ) □ BB電子數目與討論.............49 4.1.1 Power Law.............................49 4.1.2 DD* ( □ GB ) □ BB電子數目與討論.....51 4.2 GB亞穩態的轉變與討論..........................54 4.3 DD* □ GB電子數目與討論.......................59 4.4 GB □ BB電子數目............................. 61 第五章 結論..............................................62 Reference.................................................63

    Reference

    [1] Semiconductors, 2nd Edition, edited by R. A. Smith
    (Cambridge Univ. Press, 1979).
    [2] J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230
    (1984). “The Transistor, A Semi-conductor Triode”; W.
    Shockley, Bell Syst. Tech. J. 28, 435 (1949). “The
    Theory of p-n Junction in Semiconductors and p-n
    Junction Transistor”.
    [3] Fundamentals of Modern VLSI Devices, 1st Edition,
    edited by Y. Taur, and Tak H. Ning (Cambridge Univ.
    Press, 1998). p. 90 ~ 106.
    [4] C.-L. Wu, J.-L. Hsieh, H.-D. Hsueh, and S. Gwo, Phys.
    Rev. B 65, 045309 (2002). “Thermal nitridation of the Si
    (111)-(7 × 7) surface studied by scanning tunneling
    microscopy and spectroscopy”.
    [5] R. Wolkow and Ph. Avouris, Phys. Rev. Lett. 60, 1049
    (1988). “Atom-resolved surface chemistry using scanning
    tunneling microscopy”.
    [6] B. J. Brook, Nature 400, 312 (1999). “Superhard
    Ceramics”.
    [7] Semiconductor Devices, Physics and Technology, 2nd
    Edition, edited by S. M. Sze (John Wiley & Sons Press,
    2002).
    [8] S. Kitamura, T. Sato, and M. Iwatsuki, Nature 351, 215
    (1991). “Observation of surface reconstruction on
    silicon above 800 ℃ using the STM”.
    [9] R. M. Feenstra, A. J. Stavin, G. A. Held, and M. A.
    Lutz, Phys. Rev. Lett. 66, 3257 (1991). “Surface
    diffusion and phase transition on the Ge(111) surface
    studied by scanning tunneling microscopy”.
    [10] I.-S. Hwang, and J. Golovchenko, Science 258, 1119
    (1992). “Observation of Metastable Structural
    Excitations and Concerted Atomic Motions on a Crystal
    Surface”.
    [11] E. Ganz, S. Theiss, I.-S. Hwang, and J. Golovchenko,
    Phys. Rev. Lett. 68, 1567 (1992). “Direct measurement
    of diffusion by hot tunneling microscopy: Activation
    energy, anisotropy, and long jumps”.
    [12] L., Andersohn, Th. Berke, U. Köhler, and B.
    Voigtländer, J. Vac. Sci. Technol. A 14, 312 (1996).
    “Nucleation behavior in molecular beam and chemical
    vapor deposition of silicon on Si(111)-(7 × 7)”.
    [13] K. Cho, and E. Kaxiras, Europhys. Lett. 39, 287
    (1997). “Intermittent diffusion on the reconstructed Si
    (111) surface”.
    [14] T. Sato, S. Kitamura, and M. Iwatsuki, Surf. Sci.
    445, 130 (2000). “Initial adsorption process of Si
    atoms on an Si(111)-7 × 7 surface studied by scanning
    tunneling microscopy”.
    [15] T. Sato, S. Kitamura, and M.Iwatsuki, Vac. Sci.
    Technol. A 18, 960 (2000). “Surface diffusion of
    adsorbed Si atoms on the Si(111) 7 × 7 surface studied
    by atom-tracking scanning tunneling microscopy”.
    [16] H. Tokumoto, and M. Iwatsuki, Jpn. J. Appl. Phys. 32,
    1368 (1993). “Scanning Tunneling Microscopy of Clean
    Silicon Surfaces at Elevated Temperatures”.
    [17] A. Ichimiya, Y. Tanaka, ana K. Iwatsuki, Phys. Rev.
    Lett. 76, 4721 (1996). “Quantitative Measurements of
    Thermal Relaxation of Isolated Silicon Hillocks and
    Craters on the Si(111)-(7 × 7) Surface by Scanning
    Tunneling Microscopy”.
    [18] A. Ichimiya, Y. Tanaka, and K. Hayashi, Surf. Sci.
    386, 182 (1997). “Thermal relaxation of silicon islands
    and craters on silicon surfaces”.
    [19] A. Ichimiya, Y. Tanaka, and K. Hayashi, Surf. Rev.
    Lett. 5, 821 (1998). “Relaxation of Nanostructure on
    the Si(111)(7 × 7) Surface by High Temperature Scanning
    Tunneling Microscopy”.
    [20] I.-S. Hwang, R.-L. Lo, and T. T. Tsong, J. Vac. Sci.
    Technol. A 16, 2632 (1998). “Study of the dynamics of
    point defects at Si(111)- 7 × 7 surfaces with scanning
    tunneling microscopy”.
    [21] Ph. Avouris and R. Wolkow, Phys. Rev. B 39, 5091
    (1989). “Atom-resolved surface chemistry studied by
    scanning tunneling microscopy and spectroscopy”.
    [22] P. A. Taylor, R. M. Wallace, W. J. Choyke, M. J.
    Dresser and J. T. Yates Jr., Surf. Sci. 215, 286 (1989).
    “The dissociative adsorption of ammonia on Si(100)”.
    [23] M.-H. Kang, Phys. Rev. B 68, 205307 (2003). “Theory
    of the site-selective reaction of NH3 with Si(111)-(7 ×
    7)”.
    [24] K. Cho, E. Kaxiras, and J.D. Joannopoulos, Phys. Rev.
    Lett. 79, 5078 (1997).“Theory of Adsorption and
    Desorption of H2 Molecules on the Si(111)- (7 × 7)
    surface”.
    [25] X. Wang, and X. Xu, J. Phys. Chem. C 111, 16974
    (2007). “Mechanisms for NH3 Decomposition on the Si
    (111)- 7 × 7 Surface: A DFT Cluster Model Study”.
    [26] R.-L. Lo, C.-M. Chang, and M.-S. Ho, Phys. Rev. B 76,
    113305 (2007). “NH2 and NH bonding sites determined by
    STM-induced activation on the NH3-reacted Si(111)-7 × 7
    surface”.
    [27] W. Ho, J. Chem. Phys. 117, 11033 (2002). “Single-
    molecule chemistry”.
    [28] G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys.
    Rev. Lett. 49, 57 (1982).“Surface Studies by Scanning
    Tunneling Microscopy”; and ibid 50, 120 (1983). “7 × 7
    Reconstruction on Si(111) Resolved in Real Space”.
    [29] Introduction to Scanning Tunneling Microscopy, edited
    by J. Chen (Oxford Univ. Press, 1993).
    [30] 黃英碩, 科儀新知, 18 (3), 4 (1996). “掃描穿隧顯微術的
    原理及應用”.
    [31] 徐銘杰, 國立中央大學物理所碩士論文, 第二章, 第9
    (2004).
    [32] Fundamentals of PHYSICS, 6th Edition, edited by D.
    Halliday, R. Resnick, and J. Walker (John Wiley & Sons
    Press, 2001). p. 534 ~ 538.
    [33] 黃政德, 國立清華大學動力機械工程學系碩士班論文, 第二
    章, 第26頁 (2004).
    [34] I. Ekvall, E. Wahlström, D. Claesson, H. Olin,and E.
    Olsson, Meas. Sci. Technol., 10, 11 (1999).
    “Preparation and characterization of electrochemically
    etched W tips for STM”.
    [35] B. C. Stipe, M. A. Rezaei, and W. Ho, Phys. Rev.
    Lett. 78, 4410 (1997).“Single-Molecule Dissociation by
    Tunneling Electrons”.
    [36] L. Soukiassian, A. J. Mayne, M. Carbone, and G.
    Dujardin, Phys. Rev. B 68, 035303 (2003). “Atomic-scale
    desorption of H atoms from the Si(100)-2 × 1 : H
    surface: Inelastic electron interactions”.
    [37] P. A. Sloan, M. F. G. Hedouin, and R. E. Palmer,
    Phys. Rev. Lett. 91, 118301 (2003). “Mechanisms of
    Molecular Manipulation with the Scanning Tunneling
    Microscope at Room Temperature: Chlorobenzene / Si(111)-
    (7 × 7)”.
    [38] P. A. Sloan, and R. E. Palmer, Nature 434, 367
    (2005). “Two-electron
    dissociation of single molecules by atomic manipulation
    at room temperature”.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE