研究生: |
陳敬榮 Chen, Ching-Jung |
---|---|
論文名稱: |
族群動態學及其應用- 漢他病毒的傳播及乾旱環境中的植被 Population Dynamics and Its Applications - Spread of Hantavirus and Vegetation in Arid Landscapes |
指導教授: |
吳國安
Wu, Kuo-An |
口試委員: |
黎璧賢
Lai, Pik-Yin 陳俊仲 Chen, Chun-Chung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 群族動態學 、漢他病毒 、臨界尺度 、非局域效應 、圖案形成 |
外文關鍵詞: | population dynamics, hantavirus disease, critical size, nonlocal effect, pattern formation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
反應擴散方程式(reaction diffusion equation)已經被證實能夠真實地描述生態系統中族群的演變過程,有名的例子如:Fisher’s 方程式(Fisher’s equation)、Nagumo模型(Nagumo model)或是非局部Nagumo模型(non-local Nagumo model)預測出的一些重要特性都已經在自然環境中被觀察到,奠基在這些成功的基石上,我們更近一步的探討族群動態學中兩個重要的議題。
我們第一個探討的議題是環境的臨界尺度(critical size):系統大於(小於)臨界尺度將會決定族群最終會生存(滅亡),在應用的層面,因為老鼠被認為是散播漢他病毒的媒介,所以我們專注在老鼠的動態,臨界尺度的概念給了我們一些靈感,讓我們在消滅漢他病毒的同時得以保持食物鏈的完整性,此外,我們在原本使用的模型中放入了兩種修正項,並且計算放入修正項之後臨界尺度的變化。
第二個討論的議題是源於植被的非局部交互作用而在空間中觀察到的週期性圖形,之前使用非局部的耦合Nagumo模型的計算告訴我們植物會展現出兩種不同的生長模式,一個是共存,另一個是隔離,植物會選擇在空間中形成同相位的生長(共存)或是反相位的生長(隔離),先前的研究發現當非局部的範圍由小變到大會使得系統經歷一個從隔離到共存的相變,在這份論文中我們會更近一步探討相變。
It has been demonstrated that the reaction diffusion equation is capable of describing evolution of population in ecosystems realistically. For example, Fisher's equation, Nagumo model or non-local Nagumo model are well known models for which important properties predicted by these models were observed in nature. Based on these successes, we further explore the following two issues in the field of population dynamics.
The first topic that we investigate is the critical size of environment, above which the population survive and below which the population will become extinct. We focus on the dynamics of rodents, which are generally considered as the media to spread the Hantavirus disease. The concept of critical size might shed light on eliminating the disease without destroying the integrity of food web. Furthermore, two different modifications on the previous models are made respectively and the consequences of the critical size with respect to the modification are calculated.
The second topic is about the periodic spatial pattern observed in vegetation which originates from the non-local interactions between plants of the system. Previous calculation based on a two-species non-local Nagumo model has shown two possible modes of vegetation distributions, namely, co-existence and isolation. The two species would form either localized in-phase structures (coexistence) or localized out-of-phase structure (isolation). It was found that the domination of isolated mode would transition into co-existed state when the interaction range is varied. A detailed investigation of mode transition in the two-species non-local Nagumo model is discussed.
[1] Brian Hjelle and Gregory E. Glass. Outbreak of hantavirus infection in the four corners region of the united states in the wake of the 1997–1998 el nino— southern oscillation. The Journal of Infectious Diseases, 181(5):1569–1573, 05 2000.
[2] FISHER R. A. The wave of advance of advantageous genes. Annals of Eu- genics, 7(4):355–369.
[3] V. M. Kenkre and M. N. Kuperman. Applicability of the fisher equation to bacterial population dynamics. Physical Review E, 67(5):051921–, 05 2003.
[4] W. Artiles, P. G. S. Carvalho, and R. A. Kraenkel. Patch-size and isolation effects in the fisher–kolmogorov equation. Journal of Mathematical Biology, 57(4):521, 2008.
[5] Niraj Kumar and V. M. Kenkre. Effects of gradual spatial variation in re- sources on population extinction: Analytic calculations for abrupt transitions. Physica A: Statistical Mechanics and its Applications, 390(2):257–262, 2011.
[6] John A. Lubina and Simon A. Levin. The spread of a reinvading species: Range expansion in the california sea otter. 131(4):526–543, 1988.
[7] J. D. Murray. 2010.
[8] Mei-Hui Wang and Mark Kot. Speeds of invasion in a model with strong or
weak allee effects. Mathematical Biosciences, 171(1):83–97, 2001.
[9] Mark J. Ablowitz and Anthony Zeppetella. Explicit solutions of fisher’s equa- tion for a special wave speed. Bulletin of Mathematical Biology, 41(6):835– 840, 1979.
[10] Nicolas Perry. Experimental validation of a critical domain size in reaction– diffusion systems with escherichia coli populations. Journal of the Royal So- ciety Interface, 2(4):379–387, 09 2005.
[11] T. Neicu, A. Pradhan, D. A. Larochelle, and A. Kudrolli. Extinction transi- tion in bacterial colonies under forced convection. Phys. Rev. E, 62:1059–1062, Jul 2000.
[12] Anna L Lin, Bernward A Mann, Gelsy Torres-Oviedo, Bryan Lincoln, Josef Ka ̈s, and Harry L Swinney. Localization and extinction of bacterial popula- tions under inhomogeneous growth conditions. Biophysical Journal, 87(1):75– 80, 07 2004.
[13] D. J. Pamplona da Silva and Roberto Kraenkel. Population persistence in weakly-coupled sinks, volume 391. 01 2012.
[14] Allee W. C. and Bowen Edith S. Studies in animal aggregations: Mass pro- tection against colloidal silver among goldfishes. Journal of Experimental Zoology, 61(2):185–207.
[15] Philip A. Stephens and William J. Sutherland. Consequences of the allee effect for behaviour, ecology and conservation. Trends in Ecology & Evolution, 14(10):401–405, 1999.
[16] Franck Courchamp, Tim Clutton-Brock, and Bryan Grenfell. Inverse density dependence and the allee effect. Trends in Ecology & Evolution, 14(10):405– 410, 1999.
[17] Andrew M. Kramer, Brian Dennis, Andrew M. Liebhold, and John M. Drake. The evidence for allee effects. Population Ecology, 51(3):341, 2009.
[18] P. A. Stephens, W. J. Sutherland, and R. P. Freckleton. What is the allee effect? 87(1):185–190, 1999.
[19] DAVID S. BOUKAL and LUDEˇK BEREC. Single-species models of the allee effect: Extinction boundaries, sex ratios and mate encounters. Journal of Theoretical Biology, 218(3):375–394, 2002.
[20] V. M. Kenkre and Niraj Kumar. Nonlinearity in bacterial population dy- namics: Proposal for experiments for the observation of abrupt transitions in patches. Proceedings of the National Academy of Sciences, 105(48):18752, 12 2008.
[21] J. Buceta, C. Escudero, F. J. de la Rubia, and Katja Lindenberg. Outbreaks of hantavirus induced by seasonality. Physical Review E, 69(2):021906–, 02 2004.
[22] Niraj Kumar, M. N. Kuperman, and V. M. Kenkre. Theory of possible effects of the allee phenomenon on the population of an epidemic reservoir. Physical Review E, 79(4):041902–, 04 2009.
[23] G. Abramson and V. M. Kenkre. Spatiotemporal patterns in the hantavirus infection. Physical Review E, 66(1):011912–, 07 2002.
[24] C Schmaljohn and B Hjelle. Hantaviruses: a global disease problem. Emerging Infectious Diseases, 3(2):95–104, Apr-Jun 1997.
[25] T B Graham and B B Chomel. Population dynamics of the deer mouse (peromyscus maniculatus) and sin nombre virus, california channel islands. Emerging Infectious Diseases, 3(3):367–370, Jul-Sep 1997.
[26] James N. Mills, Thomas G. Ksiazek, C. J. Peters, and James E. Childs. Long- term studies of hantavirus reservoir populations in the southwestern united states: A synthesis. 5(1):135, 1999.
[27] Michael D. Cramer and Nichole N. Barger. Are namibian “fairy circles”the consequence of self-organizing spatial vegetation patterning? PLOS ONE, 8(8):e70876–, 08 2013.
[28] W. J. Jankowitz, M. W. Van Rooyen, D. Shaw, J. S. Kaumba, and N. Van Rooyen. Mysterious circles in the namib desert. South African Journal of Botany, 74(2):332–334, 2008.
[29] M. W van Rooyen, G. K Theron, N van Rooyen, W. J Jankowitz, and W. S Matthews. Mysterious circles in the namib desert: review of hypotheses on their origin. Journal of Arid Environments, 57(4):467–485, 2004.
[30] D. Escaff, C. Fernandez-Oto, M. G. Clerc, and M. Tlidi. Localized vegetation patterns, fairy circles, and localized patches in arid landscapes. Physical Review E, 91(2):022924–, 02 2015.
[31] C. Fernandez-Oto, M. G. Clerc, D. Escaff, and M. Tlidi. Strong nonlocal coupling stabilizes localized structures: An analysis based on front dynamics. Physical Review Letters, 110(17):174101–, 04 2013.
[32] C. Fernandez-Oto, M. Tlidi, D. Escaff, and M. G. Clerc. Strong interaction between plants induces circular barren patches: fairy circles. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2027), 2014.
[33] Vicen ̧c M ́endez and Daniel Campos. Population extinction and survival in a hostile environment. Physical Review E, 77(2):022901–, 02 2008.
[34] U Alon, L Camarena, M G Surette, B Aguera y Arcas, Y Liu, S Leibler, and J B Stock. Response regulator output in bacterial chemotaxis. The EMBO Journal, 17(15):4238–4248, 08 1998.
[35] M. Siva Kumar and P. Philominathan. The physics of flagellar motion of e. coli during chemotaxis. Biophysical Reviews, 2(1):13–20, 2010.
[36] HOWARD C. BERG and DOUGLAS A. BROWN. Chemotaxis in escherichia coli analysed by three-dimensional tracking. Nature, 239:500 EP –, 10 1972.
[37] Olga Vasilyeva and Frithjof Lutscher. Population dynamics in rivers: analysis of steady states. 18:439–469, 01 2010.
[38] Jef Huisman, Manuel Arrayás, Ute Ebert, Ben Sommeijer, and Asso- ciate Editor: Jim Elser. How do sinking phytoplankton species manage to persist? 159(3):245–254, 2002.
[39] Karin A. Dahmen, David R. Nelson, and Nadav M. Shnerb. Population dynamics and non-hermitian localization. In D. Reguera, J. M. G. Vilar, and J. M. Rub ́ı, editors, Statistical Mechanics of Biocomplexity, pages 124–151, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.
[40] Michael P. Brenner, Leonid S. Levitov, and Elena O. Budrene. Physical mech- anisms for chemotactic pattern formation by bacteria. Biophysical Journal, 74(4):1677–1693, 1998.
[41] Evelyn F. Keller and Lee A. Segel. Traveling bands of chemotactic bacteria: A theoretical analysis. Journal of Theoretical Biology, 30(2):235–248, 1971.
[42] Mehdi Gharasoo, Florian Centler, Ingo Fetzer, and Martin Thullner. How the chemotactic characteristics of bacteria can determine their population patterns. Soil Biology and Biochemistry, 69:346–358, 2014.
[43] Mann B. Spatial phase transition in vacterial growth (doctoral dissertation). 2001.
[44] Douglas W. Morris. Measuring the Allee Effect: Positive Density Dependence in Small Mammals, volume 83. 01 2002.
[45] C.H.Kao.Investigationofvegetationcompetitionusingthenon-localcoupled nagumo model (master’s theses). 2016.
[46] M. G. Clerc, D. Escaff, and V. M. Kenkre. Patterns and localized structures in population dynamics. Physical Review E, 72(5):056217–, 11 2005.
[47] M. G. Clerc, D. Escaff, and V. M. Kenkre. Analytical studies of fronts, colonies, and patterns: Combination of the allee effect and nonlocal compe- tition interactions. Physical Review E, 82(3):036210–, 09 2010.
[48] Raymond E. Goldstein, Gemunu H. Gunaratne, L. Gil, and P. Coullet. Hydro- dynamic and interfacial patterns with broken space-time symmetry. Physical Review A, 43(12):6700–6721, 06 1991.