簡易檢索 / 詳目顯示

研究生: 潘韻如
Yun-Ru Pan
論文名稱: EB病毒基因表現與病毒致癌蛋白LMP2A在調控人類尿嘧啶雙磷酸葡萄糖去氫酵素基因及細胞移行的功能
Epstein-Barr Virus Gene Expressions and the Role of the Viral Oncoprotein LMP2A in Regulation of Human UDP-Glucose Dehydrogenase Gene and Cell Migration
指導教授: 張晃猷
Hwan-You Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 98
中文關鍵詞: EB病毒尿嘧啶雙磷酸葡萄糖去氫酵素潛伏第二A型膜蛋白基因表現細胞移行
外文關鍵詞: Epstein-Barr Virus, UDP-glucose dehydrogenase, latent membrane protein 2A, gene expression, cell migration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Epstein-Barr virus (EBV) has been implicated in the development of many human neoplasias including B lymphoma and nasopharygeal carcinoma (NPC). During infection, EBV has the potential to undergo latent and lytic pathways. However, expression of many of the viral genes during the lytic-latent transition remains unclear. In the first part of my study, I investigated the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) and hydroxyurea (HU), two commonly used EBV life cycle modulators, on the expression profiles of the entire genome of EBV persistent infected in B95-8 cells. After treatment with TPA for 48 h, the copy number of EBV genome in the cells increased about 2.5 fold, whereas HU treatment resulted in a reduction to approximately two-thirds of the original level. Except a small set of genes, the amounts of EBV mRNA are generally less abundant than that of □-actin. The expression of a large fraction of the 80 EBV genes was found to be activated after TPA treatment; in contrast, treatment of the B95-8 cells with HU, a nucleotide synthesis inhibitor, dramatically suppressed the expression of EBV lytic genes. Overall, this study demonstrated that quantitative real-time PCR is a reliable method to monitor the influence of drug-treatment in EBV genes regulation.
    The EBV latent membrane protein 2A (LMP2A) is frequently detected in NPC biopsies. A recent cDNA microarray assay notes that expression of the UDP-glucose dehydrogenase (UGDH) gene shows high correlation with LMP2A levels in NPC biopsies. UGDH catalyzes oxidation of UDP-glucose to yield UDP-glucuronic acid, a precursor of extracellular matrix (ECM) component. Overproduction of ECM is associated with many cellular behaviors including motility and migration, suggesting that UGDH is a good target for controlling cancer metastasis. In the second part of my study, I had extended the findings and demonstrated that the UGDH transcript and protein quantities, the enzyme activity, and glycosaminoglycan contents increase in LMP2A over-expressed HEK293 cells. Results showed that a region from 630 to 486 bp upstream of the transcription start of UGDH promoter is critical for LMP2A mediated gene expression and an Sp1 binding site mutation in this region reduces the LMP2A-responsive expression of the UGDH gene. Moreover, cell motility enhancement by LMP2A diminishes by treating the cells with Sp1-specific inhibitor and siRNA. Using a signaling pathway specific inhibitor, it is revealed that PI3K/Akt and ERK, not JNK and p38, participate in LMP2A-induced UGDH expression. This study provides a molecular model of the mechanism participating in LMP2A-mediated UGDH gene activation.
    In the third part study employed small interference RNA (siRNA) to downregulate human UGDH gene expression in colorectal carcinoma HCT-8 cells. Reduction in both mRNA and protein levels of UGDH could be clearly observed in siRNA-transfected HCT-8 cells. Production of glucosaminoglycans was also decreased in monolayer cells and spheroid culture upon transfection with the UGDH siRNA. The use of UGDH siRNA significantly disrupts HCT-8 cell invasive ability in both a three-dimensional collagen gel assay and transwell assay suggesting a possibility of UGDH to be used as a target for colorectal cancer therapeutic intervention.


    EB病毒感染已被證實和許多人類細胞癌化有關,其中包括了B細胞淋巴癌和鼻咽癌。在EB病毒感染過程中,包含了潛伏和細胞溶解的過程。然而,從潛伏期過渡至細胞溶解期,病毒基因的調控表現並不清楚。第一部分的研究中,將使用TPA和HU兩種藥品加入EB病毒持續感染的B95-8細胞,用以分析EB病毒整體基因表現的情況。在加入TPA四十八小時後,EB病毒在細胞中的複製速率約增加二點五倍;而加入HU的情況,則降低EB病毒的複製速率達三分之二。大部分的EB病毒基因在細胞中的表現量均低於□型肌動蛋白。在加入TPA後,多數的病毒基因表現都會增加;相反的,當加入核甘酸合成抑制劑HU後,多數屬於細胞溶解期表現的基因會呈現明顯的抑制情況。在這部份的研究中,定量即時PCR技術的確是個可以用來偵測在藥物影響下EB病毒的基因表現。
    在鼻咽癌切片檢查中,經常可以發現EB病毒第二A型潛伏膜蛋白(LMP2A)的存在。最近由鼻咽癌切片檢體所獲的cDNA微陣列研究中發現,第二A型潛伏膜蛋白與細胞中的尿嘧啶雙磷酸葡萄糖去氫酵素(UDP-glucose dehydrogease, UGDH)基因具有很高的相關性。尿嘧啶雙磷酸葡萄糖去氫酵素催化尿嘧啶雙磷酸葡萄糖(UDP-glucose)氧化反應變成尿嘧啶雙磷酸葡萄糖醛酸(UDP-glucuronic acid),是構成細胞間質的前驅物。過量的細胞間質與眾多的細胞行為有關,其中包括了細胞的移行現象,因此尿嘧啶雙磷酸葡萄糖去氫酵素在研究癌細胞轉移上可能是個很好的研究對象。第二部份的研究,延續這個發現並證實:在EB病毒第二A型潛伏膜蛋白過量表現的HEK293細胞中,尿嘧啶雙磷酸葡萄糖去氫酵素基因其轉錄、轉譯功能及酵素活性都呈現增加情形,而細胞中的葡萄氨聚糖(glycoaminoglycans)含量也隨之增加。EB病毒第二A型潛伏膜蛋白所調控的尿嘧啶雙磷酸葡萄糖去氫酵素基因的啟動子區域,是位於其上游630 □ 486 bp,在這個區域的Sp1位點發生突變後,將減低EB病毒第二A型潛伏膜蛋白對其調控的影響。同時,加入Sp1的特定抑制劑與siRNA均可抑制由EB病毒第二A型潛伏膜蛋白所誘導的細胞移行現象。進一步尋找EB病毒第二A型潛伏膜蛋白調控尿嘧啶雙磷酸葡萄糖去氫酵素基因表現的訊息調控路徑,在加入特定抑制劑後,發現PI3K/Akt和ERK參與其中。這部份實驗提供了EB病毒第二A型潛伏膜蛋白調控尿嘧啶雙磷酸葡萄糖去氫酵素基因表現可能的分子調控機制。
    在第三個研究部分,以siRNA降低人類腸癌細胞HCT-8中的尿嘧啶雙磷酸葡萄糖去氫酵素,發現在RNA和蛋白質表現上均有明顯的抑制。同時,在單層細胞培養中,可測量到葡萄氨聚糖的產量降低;在三維細胞培養中,延緩細胞球小體(spheroid)的培養時間,亦可破壞癌細胞的移行能力。因此,尿嘧啶雙磷酸葡萄糖去氫酵素或許亦可作為治療腸癌上的標的。

    Table of Contents Table of Contents II Abstract (English) V Abstract (Chinese) VII Acknowledgement IX Abbreviations X Chapter 1 General Introduction 1 Chapter 2 Analysis of Epstein-Barr Virus Gene Expression upon Phorbol Ester and Hydroxyurea Treatment by Quantitative Real-Time PCR 7 2.1. Abstract 8 2.2. Introduction 9 2.3. Materials and Methods 11 2.3.1. Cell lines and growth conditions 11 2.3.2. Nucleic acid isolation and reverse transcription (RT) reaction 11 2.3.3. Conventional PCR Amplification of cDNA 12 2.3.4. Primer design 12 2.3.5. Conditions of qPCR and calculation of CT, dCT, ddCT, and dddCT values 12 2.4. Results 14 2.4.1. Effects of TPA and HU treatment on EBV genome copy number 14 2.4.2. Determination of primer specificity for qPCR analysis of EBV gene expression 14 2.4.3. Quality control of the template for the qPCR 15 2.4.4. Analysis of the relative abundance of EBV mRNA in B95-8 cells 16 2.4.5. Effects of TPA on EBV gene expression 17 2.4.6. Effects of HU treatment on EBV gene expression 18 2.4.7. Analysis of TPA treatment time and EBV gene expression 18 2.4.8. Effects of HU treatment time on EBV gene expression 19 2.5. Discussion 20 2.6. Tables 23 Table 2-1 dCT, ddCT and dddCT values of TPA treatment of EBV genes 23 Table 2-2 dCT, ddCT and dddCT values of HU treatment of EBV genes 25 2.7. Figures 27 Fig. 2-1. EBV genome copy numbers in a single B95-8 cell after TPA or HU treatment. 27 Fig. 2-2. Qualitative analysis of EBV mRNA between RT-negative and RT-positive pools. 28 Fig. 2-3. Relative mRNA abundance of EBV genes. 29 Fig. 2-4. Effects of TPA and HU on EBV gene expression. 30 Fig. 2-5. Effects of TPA- and HU-treatment for different time periods on the expression of EBV genes. 31 Chapter 3 Epstein-Barr virus latent membrane protein 2A upregulates UDP-glucose dehydrogenase gene expression via ERK and PI3K/Akt pathway 32 3.1. Abstract 33 3.2. Introduction 34 3.3. Materials and Methods 36 3.3.1. Cell lines and culture conditions 36 3.3.2. RNA extraction, reverse transcription (RT) reaction and quantitative real-time PCR (qPCR) 36 3.3.3. Measurement of UGDH activity 37 3.3.4. Quantitative measurement of glycosaminoglycans 37 3.3.5. Construction of promoter–reporter plasmids and site-directed mutagenesis 38 3.3.6. Transient transfection and luciferase assay 38 3.3.7. Western blotting analysis 39 3.3.8. Extraction of nuclear proteins and electrophoresis mobility shift assay (EMSA) 40 3.3.9. Three-dimensional collagen gel cell migration assay 41 3.4. Results 42 3.4.1. LMP2A upregulates UGDH gene expression 42 3.4.2. LMP2A increases GAGs production 42 3.4.3. The □632 to □486 region of UGDH promoter contains LMP2A responsive sequence 43 3.4.4. Identification of Sp1 binding motifs contributing to LMP2A-mediated UGDH promoter 44 3.4.5. Sp1 binds to the □563 to □555 region of UGDH promoter 45 3.4.6. Overexpression of Sp1 enhances UGDH promoter activation by LMP2A 45 3.4.7. Effects of Sp1 inhibitor and Sp1 siRNA on UGDH promoter activity 46 3.4.8. Involvement of Sp1 in LMP2A-mediated cell motility 47 3.4.9. LMP2A-mediated UGDH promoter regulation involves PI3K/Akt and ERK pathways 47 3.4.10. Identification of tyrosine residues in LMP2A essential for UGDH promoter activation 48 3.5. Discussion 50 3.6. Figures 54 Fig. 3-1. Effects of LMP2A on UGDH expression. 54 Fig. 3-2. Quantification of GAG in cells with or without LMP2A expression. 56 Fig. 3-3. Nucleotide sequence of the 5’-flanking region of the human UGDH gene. 57 Fig. 3-4. Deletion and site-specific mutation of UGDH promoter. 58 Fig. 3-5. Eletrophoretic mobility shift analysis (EMSA) of UGDH promoter. 59 Fig. 3-6. Determination of Sp1 effect on LMP2A-induced UGDH gene expression. 61 Fig. 3-7. Roles of Sp1 in LMP2A-induced cell motility in collagen gels. 63 Fig. 3-8. Identification of the signaling pathway responsible for LMP2A-mediated UGDH gene activation. 64 Fig. 3-9. Effects of LMP2A tyrosine mutations on human UGDH gene promoter activation. 66 Fig. 3-10. A model of UGDH gene activation by LMP2A. 67 Chapter 4 Migration of HCT-8 Colorectal Carcinoma Cells Is Impeded by Downregulating UDP-Glucose Dehydrogenase 68 4.1. Abstract 69 4.2. Introduction 70 4.3. Material and Methods 72 4.3.1. Cell lines, culture conditions, and transfection 72 4.3.2. RNA extraction, reverse transcription (RT) reaction and quantitative real-time PCR (qPCR) 72 4.3.3. Western bloting analysis 73 4.3.4. Quantitative measurement of glycosaminoglycans 73 4.3.5. Multicellular spheroid culture 74 4.3.6. Three-dimensional collagen gel cell migration assay 75 4.3.7. Transwell assay 75 4.4. Results 76 4.4.1. Suppression of human UGDH expression by siRNA 76 4.4.2. Decrease of GAG production by UGDH siRNA 76 4.4.3. UGDH down regulation resulted in delayed spheroid formation 77 4.4.4. Disruption of cell motilities of HCT-8 cells with UGDH siRNA effects 77 4.5. Discussion 79 4.6. Figures 81 Fig. 4-1. Effects of siRNA on UGDH expression. 81 Fig. 4-2. Effects of UGDH down regulation on glycoconjugate production in HCT-8 cell. 82 Fig. 4-3. Effects of UGDH down regulation on multicellular spheroid formation. 83 Fig. 4-4. Modulation of HCT-8 cell motility by UGDH siRNA. 84 Fig. 4-5. Reduction of cell motility by UGDH siRNA in the transwell assay. 85 References 86 Appendix 94

    Aaltomaa, S., Lipponen, P., Tammi, R., Tammi, M., Viitanen, J., Kankkunen, J.P. and Kosma, V.M. (2002) Strong Stromal Hyaluronan Expression Is Associated with PSA Recurrence in Local Prostate Cancer. Urol Int. 69: 266-272.
    Akula, S.M., Wang, F.Z., Vieira, J. and Chandran, B. (2001) Human herpesvirus 8 interaction with target cells involves heparan sulfate. Virology. 282: 245-255.
    Allen, M.D., Young, L.S. and Dawson, C.W. (2005) The Epstein-Barr virus-encoded LMP2A and LMP2B proteins promote epithelial cell spreading and motility. J Virol. 79: 1789-1802.
    Andersson-Anvret, M., Forsby, N., Klein, G. and Henle, W. (1977) Relationship between the Epstein-Barr virus and undifferentiated nasopharyngeal carcinoma: correlated nucleic acid hybridization and histopathological examination. Int J Cancer. 20: 486-494.
    Anttila, M.A., Tammi, R.H., Tammi, M.I., Syrjanen, K.J., Saarikoski, S.V. and Kosma, V.M. (2000) High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Res. 60: 150-155.
    Arvelo, F. and Poupon, M.F. (2001) Molecular and cell aspects of the cancer metastasis. Acta Cient Venez. 52: 304-312.
    Auvinen, P., Tammi, R., Parkkinen, J., Tammi, M., Agren, U., Johansson, R., et al (2000) Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol. 156: 529-536.
    Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., et al (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 310: 207-211.
    Benasciutti, E., Pages, G., Kenzior, O., Folk, W., Blasi, F. and Crippa, M.P. (2004) MAPK and JNK transduction pathways can phosphorylate Sp1 to activate the uPA minimal promoter element and endogenous gene transcription. Blood. 104: 256-262.
    Berry, D., Lynn, D.M., Berry, E., Sasisekharan, R. and Langer, R. (2006) Heparin localization and fine structure regulate Burkitt's lymphoma growth. Biochem Biophys Res Commun. 348: 850-856.
    Bertrand, P., Girard, N., Delpech, B., Duval, C., d'Anjou, J. and Dauce, J.P. (1992) Hyaluronan (hyaluronic acid) and hyaluronectin in the extracellular matrix of human breast carcinomas: comparison between invasive and non-invasive areas. Int J Cancer. 52: 1-6.
    Bibeau, F., Brousset, P., Knecht, H., Meggetto, F., Drouet, E., Rubin, B. and Delsol, G. (1994) Epstein-Barr virus replication in Hodgkin disease. Bull Cancer. 81: 114-118.
    Boulton, T.G., Nye, S.H., Robbins, D.J., Ip, N.Y., Radziejewska, E., Morgenbesser, S.D., et al (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 65: 663-675.
    Brooks, L., Yao, Q.Y., Rickinson, A.B. and Young, L.S. (1992) Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol. 66: 2689-2697.
    Burkhardt, A.L., Bolen, J.B., Kieff, E. and Longnecker, R. (1992) An Epstein-Barr virus transformation-associated membrane protein interacts with src family tyrosine kinases. J Virol. 66: 5161-5167.
    Burkitt, D. (1958) A sarcoma involving the jaws in African children. Br J Surg. 46: 218-223.
    Busson, P., McCoy, R., Sadler, R., Gilligan, K., Tursz, T. and Raab-Traub, N. (1992) Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J Virol. 66: 3257-3262.
    Chavrier, P., Gruffat, H., Chevallier-Greco, A., Buisson, M. and Sergeant, A. (1989) The Epstein-Barr virus (EBV) early promoter DR contains a cis-acting element responsive to the EBV transactivator EB1 and an enhancer with constitutive and inducible activities. J Virol. 63: 607-614.
    Cheng, S.H., Jian, J.J., Tsai, S.Y., Chan, K.Y., Yen, L.K., Chu, N.M., et al (1998) Prognostic features and treatment outcome in locoregionally advanced nasopharyngeal carcinoma following concurrent chemotherapy and radiotherapy. Int J Radiat Oncol Biol Phys. 41: 755-762.
    Cheng, S.H., Tsai, S.Y., Yen, K.L., Jian, J.J., Chu, N.M., Chan, K.Y., et al (2000) Concomitant radiotherapy and chemotherapy for early-stage nasopharyngeal carcinoma. J Clin Oncol. 18: 2040-2045.
    Cheshenko, N. and Herold, B.C. (2002) Glycoprotein B plays a predominant role in mediating herpes simplex virus type 2 attachment and is required for entry and cell-to-cell spread. J Gen Virol. 83: 2247-2255.
    Chodosh, J., Holder, V.P., Gan, Y.J., Belgaumi, A., Sample, J. and Sixbey, J.W. (1998) Eradication of latent Epstein-Barr virus by hydroxyurea alters the growth-transformed cell phenotype. J Infect Dis. 177: 1194-1201.
    Cohen, J.I., Wang, F., Mannick, J. and Kieff, E. (1989) Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci U S A. 86: 9558-9562.
    Countryman, J., Jenson, H., Seibl, R., Wolf, H. and Miller, G. (1987) Polymorphic proteins encoded within BZLF1 of defective and standard Epstein-Barr viruses disrupt latency. J Virol. 61: 3672-3679.
    Dalessandro, G. and Northcote, D.H. (1977) Changes in enzymic activities of nucleoside diphosphate sugar interconversions during differentiation of cambium to xylem in pine and fir. Biochem J. 162: 281-288.
    David, M., Petricoin, E., 3rd, Benjamin, C., Pine, R., Weber, M.J. and Larner, A.C. (1995) Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins. Science. 269: 1721-1723.
    Del Duca, D., Werbowetski, T. and Del Maestro, R.F. (2004) Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. J Neurooncol. 67: 295-303.
    Dent, P., Haser, W., Haystead, T.A., Vincent, L.A., Roberts, T.M. and Sturgill, T.W. (1992) Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science. 257: 1404-1407.
    Dertinger, H. and Hulser, D.F. (1984) Intercellular communication in spheroids. Recent Results Cancer Res. 95: 67-83.
    Dolyniuk, M., Wolff, E. and Kieff, E. (1976) Proteins of Epstein-Barr Virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine- and polysaccharide-containing components of enveloped virus. J Virol. 18: 289-297.
    Dubessy, C., Merlin, J.M., Marchal, C. and Guillemin, F. (2000) Spheroids in radiobiology and photodynamic therapy. Crit Rev Oncol Hematol. 36: 179-192.
    Dykstra, M.L., Longnecker, R. and Pierce, S.K. (2001) Epstein-Barr virus coopts lipid rafts to block the signaling and antigen transport functions of the BCR. Immunity. 14: 57-67.
    Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411: 494-498.
    Epstein, M.A. and Barr, Y.M. (1964) Cultivation in Vitro of Human Lymphoblasts from Burkitt's Malignant Lymphoma. Lancet. 1: 252-253.
    Fakhari, F.D. and Dittmer, D.P. (2002) Charting latency transcripts in Kaposi's sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR. J Virol. 76: 6213-6223.
    Farrell, P.J. (1995) Epstein-Barr virus immortalizing genes. Trends Microbiol. 3: 105-109.
    Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391: 806-811.
    Fruehling, S. and Longnecker, R. (1997) The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology. 235: 241-251.
    Fruehling, S., Swart, R., Dolwick, K.M., Kremmer, E. and Longnecker, R. (1998) Tyrosine 112 of latent membrane protein 2A is essential for protein tyrosine kinase loading and regulation of Epstein-Barr virus latency. J Virol. 72: 7796-7806.
    Given, D. and Kieff, E. (1979) DNA of Epstein-Barr virus. VI. Mapping of the internal tandem reiteration. J Virol. 31: 315-324.
    Greenwel, P., Inagaki, Y., Hu, W., Walsh, M. and Ramirez, F. (1997) Sp1 is required for the early response of alpha2(I) collagen to transforming growth factor-beta1. J Biol Chem. 272: 19738-19745.
    Gregory, C.D., Rowe, M. and Rickinson, A.B. (1990) Different Epstein-Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt's lymphoma cell line. J Gen Virol. 71: 1481-1495.
    Gulley, M.L. (2001) Molecular diagnosis of Epstein-Barr virus-related diseases. J Mol Diagn. 3: 1-10.
    Hammerschmidt, W. and Sugden, B. (1989) Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature. 340: 393-397.
    Hauser, S.C., Ziurys, J.C. and Gollan, J.L. (1984) Subcellular distribution and regulation of hepatic bilirubin UDP-glucuronyltransferase. J Biol Chem. 259: 4527-4533.
    Hayward, S.D. and Kieff, E. (1977) DNA of Epstein-Barr virus. II. Comparison of the molecular weights of restriction endonuclease fragments of the DNA of Epstein-Barr virus strains and identification of end fragments of the B95-8 strain. J Virol. 23: 421-429.
    Henderson, B.E., Louie, E., SooHoo Jing, J., Buell, P. and Gardner, M.B. (1976) Risk factors associated with nasopharyngeal carcinoma. N Engl J Med. 295: 1101-1106.
    Henle, G. and Henle, W. (1976) Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer. 17: 1-7.
    Herrmann, K. and Niedobitek, G. (2003) Epstein-Barr virus-associated carcinomas: facts and fiction. J Pathol. 199: 140-145.
    Heussinger, N., Buttner, M., Ott, G., Brachtel, E., Pilch, B.Z., Kremmer, E. and Niedobitek, G. (2004) Expression of the Epstein-Barr virus (EBV)-encoded latent membrane protein 2A (LMP2A) in EBV-associated nasopharyngeal carcinoma. J Pathol. 203: 696-699.
    Hughes, J. and McCully, M.E. (1975) The use of an optical brightener in the study of plant structure. Stain Technol. 50: 319-329.
    Hummel, M. and Kieff, E. (1982) Epstein-Barr virus RNA. VIII. Viral RNA in permissively infected B95-8 cells. J Virol. 43: 262-272.
    Huyghe, P., Dassonneville, L., Fenaux, P. and Bailly, C. (2004) Hydroxyurea-induced apoptosis in an EBV-immortalized lymphoblastoid cell line. Oncol Res. 14: 235-245.
    Jiang, R., Zhang, J.L., Satoh, Y. and Sairenji, T. (2004) Mechanism for induction of hydroxyurea resistance and loss of latent EBV genome in hydroxyurea-treated Burkitt's lymphoma cell line Raji. J Med Virol. 73: 589-595.
    Jones, J.O. and Arvin, A.M. (2003) Microarray analysis of host cell gene transcription in response to varicella-zoster virus infection of human T cells and fibroblasts in vitro and SCIDhu skin xenografts in vivo. J Virol. 77: 1268-1280.
    Kari, B. and Gehrz, R. (1992) A human cytomegalovirus glycoprotein complex designated gC-II is a major heparin-binding component of the envelope. J Virol. 66: 1761-1764.
    Kawanishi, M., Sugawara, K. and Ito, Y. (1986) DNA synthesis inhibitors suppress expression of Epstein-Barr virus in chemically activated human lymphoblastoid cells. Intervirology. 25: 223-231.
    King, W.G., Mattaliano, M.D., Chan, T.O., Tsichlis, P.N. and Brugge, J.S. (1997) Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol. 17: 4406-4418.
    Knudson, W., Biswas, C., Li, X.Q., Nemec, R.E. and Toole, B.P. (1989) The role and regulation of tumour-associated hyaluronan. Ciba Found Symp. 143: 150-159; discussion 159-169, 281-155.
    Kunz-Schughart, L.A., Kreutz, M. and Knuechel, R. (1998) Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int J Exp Pathol. 79: 1-23.
    Kyriakis, J.M., App, H., Zhang, X.F., Banerjee, P., Brautigan, D.L., Rapp, U.R. and Avruch, J. (1992) Raf-1 activates MAP kinase-kinase. Nature. 358: 417-421.
    Laurent, T.C. and Fraser, J.R. (1992) Hyaluronan. Faseb J. 6: 2397-2404.
    Lee, Y.S., Nakahara, K., Pham, J.W., Kim, K., He, Z., Sontheimer, E.J. and Carthew, R.W. (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 117: 69-81.
    Lewin, N., Aman, P., Mellstedt, H., Carenfelt, C., Klein, G. and Klein, E. (1990) Epstein Barr virus (EBV) carrying cells in blood of Hodgkin's disease (HD) and non-Hodgkin lymphoma (NHL) patients with high antibody titers against EBV capsid antigens (VCA). Anticancer Res. 10: 1213-1216.
    Li, G., Satyamoorthy, K. and Herlyn, M. (2001) N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 61: 3819-3825.
    Lidin, B.I. and Lamon, E.W. (1983) Effects of DNA synthesis inhibitors on early antigen expression following primary infection or superinfection by Epstein-Barr virus. Arch Virol. 77: 13-25.
    Lin RZ, Chang HY. 2008. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J.
    Lin, R.Z., Chou, L.F., Chien, C.C. and Chang, H.Y. (2006) Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and beta1-integrin. Cell Tissue Res. 324: 411-422.
    Lipardi, C., Wei, Q. and Paterson, B.M. (2001) RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell. 107: 297-307.
    Lombardi, L., Newcomb, E.W. and Dalla-Favera, R. (1987) Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B lymphoblasts. Cell. 49: 161-170.
    Longnecker, R. (2000) Epstein-Barr virus latency: LMP2, a regulator or means for Epstein-Barr virus persistence? Adv Cancer Res. 79: 175-200.
    Longnecker, R. and Kieff, E. (1990) A second Epstein-Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. J Virol. 64: 2319-2326.
    Longnecker, R., Druker, B., Roberts, T.M. and Kieff, E. (1991) An Epstein-Barr virus protein associated with cell growth transformation interacts with a tyrosine kinase. J Virol. 65: 3681-3692.
    Macsween, K.F. and Crawford, D.H. (2003) Epstein-Barr virus-recent advances. Lancet Infect Dis. 3: 131-140.
    Maeda, H. and Ishida, N. (1967) Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J Biochem. 62: 276-278.
    Mardberg, K., Trybala, E., Tufaro, F. and Bergstrom, T. (2002) Herpes simplex virus type 1 glycoprotein C is necessary for efficient infection of chondroitin sulfate-expressing gro2C cells. J Gen Virol. 83: 291-300.
    May, M.H. and Sefton, M.V. (1999) Conformal coating of small particles and cell aggregates at a liquid-liquid interface. Ann N Y Acad Sci. 875: 126-134.
    McCubrey, J.A., Lee, J.T., Steelman, L.S., Blalock, W.L., Moye, P.W., Chang, F., et al (2001a) Interactions between the PI3K and Raf signaling pathways can result in the transformation of hematopoietic cells. Cancer Detect Prev. 25: 375-393.
    McCubrey, J.A., Steelman, L.S., Blalock, W.L., Lee, J.T., Moye, P.W., Chang, F., et al (2001b) Synergistic effects of pi3k/akt on abrogation of cytokine-dependency induced by oncogenic raf. Adv Enzyme Regul. 41: 289-323.
    McGarry, A. and Gahan, P.B. (1985) A quantitative cytochemical study of UDP-D-glucose: NAD-oxidoreductase (E.C. 1.1.1.22) activity during stelar differentiation in Pisum sativum L. cv Meteor. Histochemistry. 83: 551-554.
    Mellinghoff, I., Daibata, M., Humphreys, R.E., Mulder, C., Takada, K. and Sairenji, T. (1991) Early events in Epstein-Barr virus genome expression after activation: regulation by second messengers of B cell activation. Virology. 185: 922-928.
    Milanini-Mongiat, J., Pouyssegur, J. and Pages, G. (2002) Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J Biol Chem. 277: 20631-20639.
    Miyashita, E.M., Yang, B., Babcock, G.J. and Thorley-Lawson, D.A. (1997) Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J Virol. 71: 4882-4891.
    Moller, H.J., Heinegard, D. and Poulsen, J.H. (1993) Combined alcian blue and silver staining of subnanogram quantities of proteoglycans and glycosaminoglycans in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 209: 169-175.
    Moody, C.A., Scott, R.S., Amirghahari, N., Nathan, C.A., Young, L.S., Dawson, C.W. and Sixbey, J.W. (2005) Modulation of the cell growth regulator mTOR by Epstein-Barr virus-encoded LMP2A. J Virol. 79: 5499-5506.
    Moritani, S., Kushima, R., Sugihara, H. and Hattori, T. (1996) Phenotypic characteristics of Epstein-Barr-virus-associated gastric carcinomas. J Cancer Res Clin Oncol. 122: 750-756.
    Morrison, P., Saltiel, A.R. and Rosner, M.R. (1996) Role of mitogen-activated protein kinase kinase in regulation of the epidermal growth factor receptor by protein kinase C. J Biol Chem. 271: 12891-12896.
    Mueller-Klieser, W. (2000) Tumor biology and experimental therapeutics. Crit Rev Oncol Hematol. 36: 123-139.
    Niedobitek, G., Herbst, H., Young, L.S., Rowe, M., Dienemann, D., Germer, C. and Stein, H. (1992) Epstein-Barr virus and carcinomas. Expression of the viral genome in an undifferentiated gastric carcinoma. Diagn Mol Pathol. 1: 103-108.
    Niesters, H.G., van Esser, J., Fries, E., Wolthers, K.C., Cornelissen, J. and Osterhaus, A.D. (2000) Development of a real-time quantitative assay for detection of Epstein-Barr virus. J Clin Microbiol. 38: 712-715.
    Novakova, Z. and Roubal, J. (1988) Induction of Epstein-Barr virus antigens by hydroxyurea. Acta Virol. 32: 160-163.
    Pallesen, G., Hamilton-Dutoit, S.J., Rowe, M., Lisse, I., Ralfkiaer, E., Sandvej, K. and Young, L.S. (1991) Expression of Epstein-Barr virus replicative proteins in AIDS-related non-Hodgkin's lymphoma cells. J Pathol. 165: 289-299.
    Payne, D.M., Rossomando, A.J., Martino, P., Erickson, A.K., Her, J.H., Shabanowitz, J., et al (1991) Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). Embo J. 10: 885-892.
    Pegtel, D.M., Subramanian, A., Sheen, T.S., Tsai, C.H., Golub, T.R. and Thorley-Lawson, D.A. (2005) Epstein-Barr-virus-encoded LMP2A induces primary epithelial cell migration and invasion: possible role in nasopharyngeal carcinoma metastasis. J Virol. 79: 15430-15442.
    Peng, H.L., Lou, M.D., Chang, M.L. and Chang, H.Y. (1998) cDNA cloning and expression analysis of the human UDPglucose dehydrogenase. Proc Natl Sci Counc Repub China B. 22: 166-172.
    Princivalle, M. and de Agostini, A. (2002) Developmental roles of heparan sulfate proteoglycans: a comparative review in Drosophila, mouse and human. Int J Dev Biol. 46: 267-278.
    Raab-Traub, N., Flynn, K., Pearson, G., Huang, A., Levine, P., Lanier, A. and Pagano, J. (1987) The differentiated form of nasopharyngeal carcinoma contains Epstein-Barr virus DNA. Int J Cancer. 39: 25-29.
    Rana, T.M. (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 8: 23-36.
    Rizzotti, M., Cambiaghi, D., Gandolfi, F., Rindi, S., Salvini, R. and De Luca, G. (1986) The effect of extracellular matrix modifications on UDP-glucose dehydrogenase activity in cultured human skin fibroblasts. Basic Appl Histochem. 30: 85-92.
    Roman, L. (1980) The Biochemistry of Glycoproteins and Proteoglycans. New York: Plenum Publishing Corp.
    Ropponen, K., Tammi, M., Parkkinen, J., Eskelinen, M., Tammi, R., Lipponen, P., et al (1998) Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer. Cancer Res. 58: 342-347.
    Rychahou, P.G., Jackson, L.N., Farrow, B.J. and Evers, B.M. (2006) RNA interference: mechanisms of action and therapeutic consideration. Surgery. 140: 719-725.
    Scholle, F., Bendt, K.M. and Raab-Traub, N. (2000) Epstein-Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J Virol. 74: 10681-10689.
    Scholle, F., Longnecker, R. and Raab-Traub, N. (2001) Analysis of the phosphorylation status of Epstein-Barr virus LMP2A in epithelial cells. Virology. 291: 208-214.
    Secchiero, P., Sun, D., De Vico, A.L., Crowley, R.W., Reitz, M.S., Jr., Zauli, G., et al (1997) Role of the extracellular domain of human herpesvirus 7 glycoprotein B in virus binding to cell surface heparan sulfate proteoglycans. J Virol. 71: 4571-4580.
    Seifert, G.J. (2004) Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr Opin Plant Biol. 7: 277-284.
    Sheng, H., Shao, J. and DuBois, R.N. (2001) Akt/PKB activity is required for Ha-Ras-mediated transformation of intestinal epithelial cells. J Biol Chem. 276: 14498-14504.
    Shibata, D., Tokunaga, M., Uemura, Y., Sato, E., Tanaka, S. and Weiss, L.M. (1991) Association of Epstein-Barr virus with undifferentiated gastric carcinomas with intense lymphoid infiltration. Lymphoepithelioma-like carcinoma. Am J Pathol. 139: 469-474.
    Simpson, M.A., Wilson, C.M. and McCarthy, J.B. (2002) Inhibition of prostate tumor cell hyaluronan synthesis impairs subcutaneous growth and vascularization in immunocompromised mice. Am J Pathol. 161: 849-857.
    Stringer, S.E. (2006) The role of heparan sulphate proteoglycans in angiogenesis. Biochem Soc Trans. 34: 451-453.
    Sutherland, R.M. (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 240: 177-184.
    Sutherland, R.M., McCredie, J.A. and Inch, W.R. (1971) Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst. 46: 113-120.
    Swart, R., Ruf, I.K., Sample, J. and Longnecker, R. (2000) Latent membrane protein 2A-mediated effects on the phosphatidylinositol 3-Kinase/Akt pathway. J Virol. 74: 10838-10845.
    Toole, B.P. (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 4: 528-539.
    Toole, B.P., Wight, T.N. and Tammi, M.I. (2002) Hyaluronan-cell interactions in cancer and vascular disease. J Biol Chem. 277: 4593-4596.
    Vatsyayan, J., Peng, H.L. and Chang, H.Y. (2005) Analysis of human UDP-glucose dehydrogenase gene promoter: identification of an Sp1 binding site crucial for the expression of the large transcript. J Biochem (Tokyo). 137: 703-709.
    Vatsyayan, J., Lin, C.T., Peng, H.L. and Chang, H.Y. (2006) Identification of a cis-acting element responsible for negative regulation of the human UDP-glucose dehydrogenase gene expression. Biosci Biotechnol Biochem. 70: 401-410.
    Vigetti, D., Viola, M., Karousou, E., Rizzi, M., Moretto, P., Genasetti, A., et al (2008) Hyaluronan-CD44-ERK1/2 regulate human aortic smooth muscle cell motility during aging. J Biol Chem. 283: 4448-4458.
    Vokes, E.E., Liebowitz, D.N. and Weichselbaum, R.R. (1997) Nasopharyngeal carcinoma. Lancet. 350: 1087-1091.
    von Gise, A., Lorenz, P., Wellbrock, C., Hemmings, B., Berberich-Siebelt, F., Rapp, U.R. and Troppmair, J. (2001) Apoptosis suppression by Raf-1 and MEK1 requires MEK- and phosphatidylinositol 3-kinase-dependent signals. Mol Cell Biol. 21: 2324-2336.
    Weigel, R. and Miller, G. (1985) Latent and viral replicative transcription in vivo from the BamHI K fragment of Epstein-Barr virus DNA. J Virol. 54: 501-508.
    Wennstrom, S. and Downward, J. (1999) Role of phosphoinositide 3-kinase in activation of ras and mitogen-activated protein kinase by epidermal growth factor. Mol Cell Biol. 19: 4279-4288.
    WuDunn, D. and Spear, P.G. (1989) Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol. 63: 52-58.
    Yoshiyama, H., Imai, S., Shimizu, N. and Takada, K. (1997) Epstein-Barr virus infection of human gastric carcinoma cells: implication of the existence of a new virus receptor different from CD21. J Virol. 71: 5688-5691.
    Young, L.S. and Murray, P.G. (2003) Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene. 22: 5108-5121.
    Young, L.S., Dawson, C.W., Clark, D., Rupani, H., Busson, P., Tursz, T., et al (1988) Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol. 69: 1051-1065.
    Yuen, S.T., Chung, L.P., Leung, S.Y., Luk, I.S., Chan, S.Y. and Ho, J. (1994) In situ detection of Epstein-Barr virus in gastric and colorectal adenocarcinomas. Am J Surg Pathol. 18: 1158-1163.
    Zhu, Z., Gershon, M.D., Gabel, C., Sherman, D., Ambron, R. and Gershon, A. (1995) Entry and egress of varicella-zoster virus: role of mannose 6-phosphate, heparan sulfate proteoglycan, and signal sequences in targeting virions and viral glycoproteins. Neurology. 45: S15-17.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE