簡易檢索 / 詳目顯示

研究生: 徐志忠
Hsu, Chih-Chung
論文名稱: 代數多重網格法在不可壓縮流場模擬之應用
Applications of algebraic multigrid method on incompressible flow simulation
指導教授: 張榮語
Chang, Rong-Yeu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 97
中文關鍵詞: 代數多重網格法可延展性共位體心有限體積法
外文關鍵詞: Algebraic multigrid method, scalability, collocated finite volume method
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在求解大型稀疏矩陣線性系統問題上,工程師及數學家一直在尋找一效率高的演算方法。傳統上所謂的單層演算方法,隨著分析問題日益增加的計算量,慢慢達到它的計算極限。代數多重網格法是近年來快速興起的多層演算方法,延續幾何多重網格法所使用的平滑化及粗網格修正,而建立在代數化的系統方程上。其優點在於它可直接被應用於分析的問題上,而不需要任何幾何上的資訊,便可具極佳的數值強健性及延展性。
    本研究將建立一套以共位體心有限體積法為基礎之數值方法,討論在求解具移動邊界之多流體不可壓縮流場中,將遭遇之速度壓力場計算、溫度場計算及波前移動位置計算。針對不同數值問題之測試,應用代數多重網格法於離散後之線性方程組求解上,結果顯示出以往單層疊代法難以求解之問題,至少可達到40倍以上之加速性;而一般性之問題求解,亦可達到近5倍之加速性,展示出代數多重網格法之問題適用性及極佳演算延展性。


    In asking solving large-scale sparse matrix linear system problems, the engineer and mathematician keep looking for a method of making calculations with high efficiency. While analysis problems posed on increasingly larger computations, traditionally so-called single level methods reach its calculation limit gradually. Algebraic multigrid (AMG) is one of the multi level methods currently undergoing resurgence in popularity. The main idea behind AMG is to extend the classical ideas of geometric multigrid (smoothing and coarse-grid correction) to certain classes of algebraic systems of equations. The main practical advantage of AMG is that it can directly be applied on problem without any geometric background and poses excellent numerical robustness and scalability.
    This work build up a set of numerical method based on collocated finite volume method to discuss the computation of velocity-pressure, temperature and the moving front position while solving multi-fluid moving boundary in incompressible flow simulation. In accordance with different numerical problem tests, we apply AMG method on discretized linear system solving. The results illustrate for the problems that single level methods are hard to solve, AMG can speed up at least 40 times; for the general problems, AMG also can accelerate almost 5 times. This demonstrates the range of AMG applicability and algorithmic scalability.

    Abstract I 摘要 II 目錄 IV 圖目錄 VII 表目錄 X 符號表 XII 第一章、緒論 1 1.1. 電腦模擬計算之可延展性 1 1.2. 數值計算方法簡介 4 1.3. 代數多重網格法簡介 7 1.4. 研究目的與動機 13 第二章、數學模式與數值方法 14 2.1. 廣義輸送方程式 15 2.2. 統御方程式 16 2.3. 動量離散方程式 17 2.3.1. 對流項的處理 17 2.3.2. 擴散項的處理 18 2.3.3. 動量離散代數式 19 2.4. 能量離散方程式 19 2.5. 質量離散方程式 20 2.5.1. 共位體心之質量通量計算 20 2.5.2. SIMPLE去耦合壓力計算 21 2.6. 體積分率輸送離散方程式 22 2.7. 初始與邊界條件 23 第三章、代數多重網格法 25 3.1. 專門術語及假設 26 3.1.1 基本構成要素 26 3.1.2 一般性之假設 28 3.1.3 額外之命名 28 3.2. 多重網格之收斂定理 29 3.3. 平滑誤差 32 3.4. CAMG演算架構 34 3.4.1網格定義 34 3.4.2準備期之完整敘述 34 3.4.3粗化過程細節 39 3.4.4演算流程 41 3.4.5搭配CG為預處理 41 3.5. CAMG實作注意事項 42 第四章、程式驗證與例題測試 47 4.1. 簡介 47 4.2. 程式驗證 50 4.2.1 拉普拉斯運算子 50 4.2.2 非等向運算子及跳動係數 52 4.2.3 非對稱運算子 57 4.3. 例題測試 61 4.3.1 熱傳導問題 61 4.3.2 正方形模穴曳流問題 68 4.3.3 界面傳輸問題 75 4.3.4 押出成型問題 82 4.4. 代數多重網格法之優化 90 第五章、結論與未來展望 93 參考文獻 95

    1. http://www.llnl.gov/CASC/groups/casc-sag.html
    2. http://www.top500.org/lists/2004/11/
    3. W. F. Ames,“Numerical Methods for Partial Differential Equations”, Academic Press, New York, 1977
    4. O. C. Zienkiewicz and R. L. Taylor, “The Finite Element Method”, McGRAW-Hill, 1989
    5. 楊文賢, “有限體積法在塑膠射出成型三維流動分析之研究”, 博士論文, 清華大學, 2001
    6. I. Demirdzic, Z. Lilek and M. Peric, “A Colocated Finite Volume Method for Predicting Flows at All Speeds”, Int. J. Numer. Meth. Fluids, 16, 1029-1050, 1993
    7. S. R. Mathur and J. Y. Murthy,“A Pressure-Based Method for Unstructured Meshes”, Numer. Heat Transfer B, 31, 195-215, 1997
    8. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. van der Vorst, “Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods”, SIAM Press, Philadelphia, 1994
    9. R. P. Fedorenko, ”A Relaxation Method for Solving Elliptic Difference Equations”, Z Vycisl Mat. Fiz., 1, No. 6, 922-927, 1961
    10. A. Brandt, ”Multi-level Adaptive Solutions to Boundary-Value problems”, Mathematics of Computation, 31, 333-390, 1977
    11. W. Pieter, ” An introduction to multigrid methods”, J. Wiley, New York, 1992
    12. A. Brandt, S. McCormick, and J. W. Ruge,”Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations”, Report, Institute for Computational Studies, Colorado State Univ., 1982
    13. J. Ruge, ”Algebraic Multigrid (AMG) for geodetic survey problems”, Prelim. Proc. International MG. Conf. 5th copper Mountain, 1983
    14. J. Ruge and K. Stüben, ”Algebraic Multigrid (AMG),In “Multigrid Methods”, SIAM, Frontiers in Applied Mathematics, 5, Philadelphiam, 1986
    15. T. Grauschopf, M. Griebel, H. Regler, “Additive multilevel-preconditioners based on bilinear interpolation, matrix dependent geometric coarsening and algebraic multigrid coarsening for second order elliptic PDEs”, Appl. Numer. Math. , 23, 63-96, 1997
    16. W. Z. Huang, “Convergence of algebraic multigrid methods for symmetric positive definite matrices with weak diagonal dominance”, Appl. Math. Comp., 46, 145-164, 1991
    17. J. Fuhrmann, “A modular algebraic multilevel method”, Tech. Report Preprint 203, Weierstrass-Institut for Angewandte Analysis and Stochastik, Berlin, 1995
    18. F. Kickinger, “Algebraic multi-grid for discrete elliptic second order problems”, Institue for Mathematics, Johannes Kepler University Linz, Austria, 1997
    19. K. Stüben, “An Introduction to Algebraic Multigrid”, Appendix in the book "Multigrid" by U. Trottenberg; C.W. Oosterlee; A. Schüller, Academic Press, 413-532, 2001 Also available as GMD Report 70, November 1999.
    20. K. Stüben, “A Review of Algebraic Multigrid”, Journal of Computational and Appl. Mathematics, 128, 281-309, 2001. Also available as GMD Report 69, November 1999
    21. A. Krechel, K. Stüben,“Parallel Algebraic Multigrid Based on Subdomain Blocking”, Parallel Computing, 27, 1009-1031, 2001. Also available as GMD Report 71, December 1999
    22. P. Vanek, J. Mandel and M. Brezina,“Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems”, Computing, 56, 179-19, 1996
    23. J. Mandel, M. Brezina, P. Vanek, “Energy optimization of algebraic multigrid Bases”, UCD/CCM Report 125, 1998
    24. M. Brezina, A. Cleary, R. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. McCormick and J. Ruge, “Algebraic Multigrid Based on Element Interpolation (AMGe)”, SIAM Journal of Scientific Computing, 22, 1570-1592, 2000
    25. V. E. Henson, P. S. Vassilevski, “Element-free AMGe: General Algorithms for computing the Interpolation Weights in AMG”, SIAM Journal of Scientific Computing, 23, 629-650, 2001
    26. G. R. Bhashyam, “A Powerful Nonlinear Simulation Tool”, ANSYS Mechanical, 2002
    27. http://www.fluent.com/software/fluent/fl5bench/otherart/oart1.htm
    28. http://www.vinas.com/jp/seihin/sms/SMS_AMG_index.html
    29. P. K. Khosla and S. G. Rubin, “A Diagonally Dominant Second-Order Accurate Implicit Scheme”, Computer Fluids, 2, 207-209, 1974
    30. C.M. Rhie and W.L. Chow, “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation”, AIAA J., 21, 1525-1532, 1983
    31. O. Ubbink and R.I. Issa, “A Method for Capturing Sharp Fluid Interfaces on Arbitary Meshes”, J. Comput. Phsys, 153, 26-50, 1999
    32. A. Brandt, “Algebraic multigrid theory: the symmetric case”, Appl. Math. Comp., 19, 23-56, 1986
    33. C. Iwamura, F. S. Costa, I. Sbarski, A. Easton, N. Li,
    “An efficient algebraic multigrid preconditioned conjugate gradient solve”, Comput. Methods Appl. Mech. Engrg., 192, 2299-2318, 2003
    34. A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. Mccormick, G. N. Miranda and J. W. Ruge, “Robustness and scalability of algebraic multigrid”, SIAM Journal of Scientific Computing, 21, 1886-1908, 2000

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE