研究生: |
徐志忠 Hsu, Chih-Chung |
---|---|
論文名稱: |
代數多重網格法在不可壓縮流場模擬之應用 Applications of algebraic multigrid method on incompressible flow simulation |
指導教授: |
張榮語
Chang, Rong-Yeu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 代數多重網格法 、可延展性 、共位體心有限體積法 |
外文關鍵詞: | Algebraic multigrid method, scalability, collocated finite volume method |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在求解大型稀疏矩陣線性系統問題上,工程師及數學家一直在尋找一效率高的演算方法。傳統上所謂的單層演算方法,隨著分析問題日益增加的計算量,慢慢達到它的計算極限。代數多重網格法是近年來快速興起的多層演算方法,延續幾何多重網格法所使用的平滑化及粗網格修正,而建立在代數化的系統方程上。其優點在於它可直接被應用於分析的問題上,而不需要任何幾何上的資訊,便可具極佳的數值強健性及延展性。
本研究將建立一套以共位體心有限體積法為基礎之數值方法,討論在求解具移動邊界之多流體不可壓縮流場中,將遭遇之速度壓力場計算、溫度場計算及波前移動位置計算。針對不同數值問題之測試,應用代數多重網格法於離散後之線性方程組求解上,結果顯示出以往單層疊代法難以求解之問題,至少可達到40倍以上之加速性;而一般性之問題求解,亦可達到近5倍之加速性,展示出代數多重網格法之問題適用性及極佳演算延展性。
In asking solving large-scale sparse matrix linear system problems, the engineer and mathematician keep looking for a method of making calculations with high efficiency. While analysis problems posed on increasingly larger computations, traditionally so-called single level methods reach its calculation limit gradually. Algebraic multigrid (AMG) is one of the multi level methods currently undergoing resurgence in popularity. The main idea behind AMG is to extend the classical ideas of geometric multigrid (smoothing and coarse-grid correction) to certain classes of algebraic systems of equations. The main practical advantage of AMG is that it can directly be applied on problem without any geometric background and poses excellent numerical robustness and scalability.
This work build up a set of numerical method based on collocated finite volume method to discuss the computation of velocity-pressure, temperature and the moving front position while solving multi-fluid moving boundary in incompressible flow simulation. In accordance with different numerical problem tests, we apply AMG method on discretized linear system solving. The results illustrate for the problems that single level methods are hard to solve, AMG can speed up at least 40 times; for the general problems, AMG also can accelerate almost 5 times. This demonstrates the range of AMG applicability and algorithmic scalability.
1. http://www.llnl.gov/CASC/groups/casc-sag.html
2. http://www.top500.org/lists/2004/11/
3. W. F. Ames,“Numerical Methods for Partial Differential Equations”, Academic Press, New York, 1977
4. O. C. Zienkiewicz and R. L. Taylor, “The Finite Element Method”, McGRAW-Hill, 1989
5. 楊文賢, “有限體積法在塑膠射出成型三維流動分析之研究”, 博士論文, 清華大學, 2001
6. I. Demirdzic, Z. Lilek and M. Peric, “A Colocated Finite Volume Method for Predicting Flows at All Speeds”, Int. J. Numer. Meth. Fluids, 16, 1029-1050, 1993
7. S. R. Mathur and J. Y. Murthy,“A Pressure-Based Method for Unstructured Meshes”, Numer. Heat Transfer B, 31, 195-215, 1997
8. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. van der Vorst, “Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods”, SIAM Press, Philadelphia, 1994
9. R. P. Fedorenko, ”A Relaxation Method for Solving Elliptic Difference Equations”, Z Vycisl Mat. Fiz., 1, No. 6, 922-927, 1961
10. A. Brandt, ”Multi-level Adaptive Solutions to Boundary-Value problems”, Mathematics of Computation, 31, 333-390, 1977
11. W. Pieter, ” An introduction to multigrid methods”, J. Wiley, New York, 1992
12. A. Brandt, S. McCormick, and J. W. Ruge,”Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations”, Report, Institute for Computational Studies, Colorado State Univ., 1982
13. J. Ruge, ”Algebraic Multigrid (AMG) for geodetic survey problems”, Prelim. Proc. International MG. Conf. 5th copper Mountain, 1983
14. J. Ruge and K. Stüben, ”Algebraic Multigrid (AMG),In “Multigrid Methods”, SIAM, Frontiers in Applied Mathematics, 5, Philadelphiam, 1986
15. T. Grauschopf, M. Griebel, H. Regler, “Additive multilevel-preconditioners based on bilinear interpolation, matrix dependent geometric coarsening and algebraic multigrid coarsening for second order elliptic PDEs”, Appl. Numer. Math. , 23, 63-96, 1997
16. W. Z. Huang, “Convergence of algebraic multigrid methods for symmetric positive definite matrices with weak diagonal dominance”, Appl. Math. Comp., 46, 145-164, 1991
17. J. Fuhrmann, “A modular algebraic multilevel method”, Tech. Report Preprint 203, Weierstrass-Institut for Angewandte Analysis and Stochastik, Berlin, 1995
18. F. Kickinger, “Algebraic multi-grid for discrete elliptic second order problems”, Institue for Mathematics, Johannes Kepler University Linz, Austria, 1997
19. K. Stüben, “An Introduction to Algebraic Multigrid”, Appendix in the book "Multigrid" by U. Trottenberg; C.W. Oosterlee; A. Schüller, Academic Press, 413-532, 2001 Also available as GMD Report 70, November 1999.
20. K. Stüben, “A Review of Algebraic Multigrid”, Journal of Computational and Appl. Mathematics, 128, 281-309, 2001. Also available as GMD Report 69, November 1999
21. A. Krechel, K. Stüben,“Parallel Algebraic Multigrid Based on Subdomain Blocking”, Parallel Computing, 27, 1009-1031, 2001. Also available as GMD Report 71, December 1999
22. P. Vanek, J. Mandel and M. Brezina,“Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems”, Computing, 56, 179-19, 1996
23. J. Mandel, M. Brezina, P. Vanek, “Energy optimization of algebraic multigrid Bases”, UCD/CCM Report 125, 1998
24. M. Brezina, A. Cleary, R. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. McCormick and J. Ruge, “Algebraic Multigrid Based on Element Interpolation (AMGe)”, SIAM Journal of Scientific Computing, 22, 1570-1592, 2000
25. V. E. Henson, P. S. Vassilevski, “Element-free AMGe: General Algorithms for computing the Interpolation Weights in AMG”, SIAM Journal of Scientific Computing, 23, 629-650, 2001
26. G. R. Bhashyam, “A Powerful Nonlinear Simulation Tool”, ANSYS Mechanical, 2002
27. http://www.fluent.com/software/fluent/fl5bench/otherart/oart1.htm
28. http://www.vinas.com/jp/seihin/sms/SMS_AMG_index.html
29. P. K. Khosla and S. G. Rubin, “A Diagonally Dominant Second-Order Accurate Implicit Scheme”, Computer Fluids, 2, 207-209, 1974
30. C.M. Rhie and W.L. Chow, “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation”, AIAA J., 21, 1525-1532, 1983
31. O. Ubbink and R.I. Issa, “A Method for Capturing Sharp Fluid Interfaces on Arbitary Meshes”, J. Comput. Phsys, 153, 26-50, 1999
32. A. Brandt, “Algebraic multigrid theory: the symmetric case”, Appl. Math. Comp., 19, 23-56, 1986
33. C. Iwamura, F. S. Costa, I. Sbarski, A. Easton, N. Li,
“An efficient algebraic multigrid preconditioned conjugate gradient solve”, Comput. Methods Appl. Mech. Engrg., 192, 2299-2318, 2003
34. A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. Mccormick, G. N. Miranda and J. W. Ruge, “Robustness and scalability of algebraic multigrid”, SIAM Journal of Scientific Computing, 21, 1886-1908, 2000