研究生: |
鄭皓天 Cheng, Hao-Tien |
---|---|
論文名稱: |
對奇異點不敏感及具有光譜變異性之高光譜影像解混演算法 Outlier-insensitive Algorithm for Hyperspectral Unmixing with Spectral Variability |
指導教授: |
祁忠勇
Chi, Chong-Yung |
口試委員: |
林嘉文
Lin, Chia-Wen 林家祥 Lin, Chia-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 高光譜影像 、端元變異性 、奇異點效應 、塊座標下降法 |
外文關鍵詞: | Hyperspectral imaging, Endmember variability, Outlier effects, Block coordinate descent |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高光譜影像解混(hyperspectral unmixing)作為一種有效的技術,用於從給定的高光譜數據(hyperspectral data)中識別端元(endmember,即物質之光譜特徵)及其相對豐度值(abundance fractions)。傳統的線性混合模型(linear mixing model)通常被使用,由於其簡單性; 然而,它隱含地假設單一光譜可以完全代表單一物質。近年來,在高光譜影像解混針對給定的高光譜數據受到不可忽視的端元變異性(endmember variability)或奇異點效應(outlier effect)的影響,引起了人們很大的關注。許多先進的研究試圖在演算法中考慮端元變異性或奇異點效應來提高準確性,但迄今為止沒有一項研究將端元變異性和奇異點效應同時考慮。在本論文中,我們的目的是提出一種簡單彈性的算法,使用殘餘擾動線性混合模型(residual perturbed linear mixing model, rPLMM)分解高光譜圖像。該模型升級了傳統的線性混合模型,它允許端元光譜在每個像素改變,並同時引入額外的正規化項來考慮奇異點效應。我們為病態的逆向問題(ill-posed inverse problem)加入三個合適的正規化項,這也是一個非凸的最小化問題。之後,我們將這個最小化問題重新推演成一個可以透過塊座標下降法(block coordinate descent)解的多凸(multi-convex)問題,並以新的高光譜影像分解演算法(稱為rPLMM 算法)加以實現。最後,我們提供了一些電腦模擬和真實數據實驗結果,證明所提出的rPLMM 演算法之優良效能和適用性,最後對我們的演算法得出一些結論。
Hyperspectral unmixing (HU) works as an effective technique to identify the endmember signatures and their relative abundance fractions from a given hyperspectral data. The conventional linear mixing model (LMM) [1] is often used due to its simplicity; however, it implicitly assumes that a single spectrum can fully represent a material. Recently, the HU study for the given hyperspectral data subject to non-negligible endmember variability (EV) or outlier effects (OE) has drawn significant attention. Quite a few state-of-the-art research papers have attempted to enhance the accuracy of their proposed algorithms by taking the phenomenon of either EV or OE into account, but none has so far considered investigating EV and OE together. In this thesis, we aim to propose a simple and flexible algorithm to unmix hyperspectral image using a residual perturbed linear mixing model (rPLMM). This model upgrades the conventional LMM, which allows a pixel-wise variation of the endmember spectral signature, and introduces an additional regularization term to account for OE in the meantime. We add three suitable regularizers to the ill-posed inverse problem, which is also a nonconvex minimization problem. Then we reformulate the minimization problem into a multi-convex one that can be solved by the block coordinate descent (BCD) method, and implemented by a new HU algorithm, referred to as the rPLMM algorithm. Finally, we provide some simulation results, as well as some real experimental results, to demonstrate the efficacy and practical applicability of the proposed rPLMM algorithm followed by some conclusions.
[1] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag.,
vol. 19, no. 1, pp. 44–57, Jan. 2002.
[2] W.-K. Ma, J. M. Bioucas-Dias, T.-H. Chan, N. Gillis, P. Gader, A. J. Plaza,
A. Ambikapathi, and C.-Y. Chi, “A signal processing perspective on hyper-
Spectral unmixing: Insights from remote sensing,” IEEE Signal Process. Mag.,
vol. 31, no.1,pp.67–81, Jan. 2014.
[3] T. M. Lillesand, R. W. Kiefer, and J. W. Chipman, Remote Sensing and Image
Interpretation. New York: Wiley, 2004.
[4] C.-I. Chang, Hyperspectral Data Exploitation: Theory and Applications. New
Jersey: John Wiley&Sons, Inc., 2007.
[5] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and
J. Chanussot, “Hyperspectral unmixing overview: Geometrical, statistical, and
sparse regression-based approaches,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 5, no.2, pp. 354–379, Apr. 2012.
[6] R. Heylen, M. Parente, and P. Gader, “A review of nonlinear hyperspectral
unmixing methods,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 7, no.6, pp.1844–1868, Jun. 2014.
[7] T. Han, D. G. Goodenough, A. Dyk, and J. Love, “Detection and correction of
Abnormal pixels in hyperion images,” in Proc. IEEE Int. Geosci. And Remote
Sens. Symp., vol. 3, 2002, pp.1327–1330.
[8] B. Somers, M. Zortea, A. Plaza, and G. P. Asner, “Automated extraction of
image-based endmember bundles for improved spectral unmixing,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 396–408, Apr. 2012.
[9] O. Eches, N. Dobigeon, C. Mailhes, and J.-Y. Tourneret, “Bayesian estimation
of linear mixtures using the normal compositional model application to hyper-
spectral imagery,” IEEE Trans. Image Process., vol. 19, no. 6, pp. 1403–1413,
Jun. 2010.
[10] X. Du, A. Zare, P. Gader, and D. Dranishnikov, “ Spatial and spectral unmixing
using the beta compositional model,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 7, no. 6, pp. 1994–2003, Jun. 2014.
[11] L. Drumetz, M.-A. Veganzones, S. Henrot, R. Phlypo, J. Chanussot, and C. Jut-
ten, “Blind hyperspectral unmixing using an extended linear mixing model to
address spectral variability,” IEEE Trans. Image Process., vol. 25, no. 8, pp.
3890–3905, Aug. 2016.
[12] P. -A. Thouvenin, N. Dobigeon, and J.-Y. Tourneret, “Hyperspectral unmixing
With spectral variability using a perturbed linear mixing model,” IEEE Trans.
Signal Process., vol. 64, no. 2, pp. 525–538, Jan. 2016.
[13] I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical
pattern with unknown spectral distribution,” IEEE Trans. Acoust., Speech Signal
Process., vol. 38, no. 10, pp. 1760–1770, Oct. 1990.
[14] B. Du and L. Zhang, “Random-selection-based anomaly detector for hyperspec-
tral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1578–1589,
May 2011.
[15] T.-H. Chan, A. Ambikapathi, W.-K.Ma, and C.-Y. Chi,“Robust affine set fit-
ting and fast simplex volume max-min for hyperspectral endmember extraction,”
IEEE Trans. Geosci. Remote Sens., vol. 51, no. 7, pp. 3982–3997, Jul. 2013.
[16] P. Tseng, “Convergence of a block coordinate descent method for nondifferen-
tiable minimization,” J. Optim. Theory Appl., vol. 109, no. 3, pp. 475–494, Jun.
2001.
[17] Y.-R. Syu, C.-H. Lin, and C.-Y. Chi, “An outlier-insensitive unmixing algorithm
With spatially varying hyperspectral signatures,” accepted for publication as a
regular paper in IEEE Access.
[18] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and J. F. Hunt-
ington, “ICE: A statistical approach to identifying endmembers in hyperspectral
images,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2085–2095, Oct.
2004.
[19] C.-H. Lin, W.-K. Ma, W.-C. Li, C.-Y. Chi, and A. Ambikapathi, “Identifiability
of the simplex volume minimization criterion for blind hyperspectral unmixing:
The no-pure-pixel case,” IEEE Trans. Geosci. Remote Sens., vol. 53,no. 10, pp.
5530–5546, Oct. 2015.
[20] A. Halimi, J. M. Bioucas-Dias, N. Dobigeon, G. S. Buller, and S. McLaughlin,
“Fast hyperspectral unmixing in presence of nonlinearity or mismodeling effects,”
IEEE Trans. Comput. Imag., vol. 3, no. 2, pp. 146–159, Jun. 2017.
[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011.
[22] D. C. Heinz and C.-I. Chang, “Fully constrained least squares linear spectral
mixture analysis method for material quantification in hyperspectral imagery,”
IEEE Trans. Geosci. Remote Sens., vol. 39, no.3, pp. 529–545, Mar. 2001.
[23] M. Grant, S. Boyd, and Y. Ye.(Apr.2011). CVX: MATLAB Software
for Disciplined Convex Programming, Version 1.21. [Online]. Available:
http://cvxr.com/cvx/
[24] H. K. Aggarwal and A. Majumdar, “Hyperspectral unmixing in the presence of
mixed noise using joint-sparsity and total variation,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 9, no. 9, pp. 4257–4266, Sep. 2016.
[25] R. N. Clark, G. Swayze, R. Wise, E. Livo, T. Hoefen, R. Kokaly, and S. Sutley.
(2007). USGS Digital Spectral Library Splib06a: U.S. Geological Survey, Digital
Data Series 231. [Online]. Available: http://speclab.cr.usgs.gov/spectral.lib06
[26] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total variation spatial reg-
ularization for sparse hyperspectral unmixing,” IEEE Trans. Geosci. Remote
Sens., vol. 50, no. 11, pp. 4484–4502, Nov. 2012.
[27] A. Halimi, P. Honeine, and J. M. Bioucas-Dias, “Hyperspectral unmixing in
presence of endmember variability, nonlinearity, or mismodeling effects,” IEEE
Trans. Image Process., vol. 25, no. 10, pp. 4565–4579, Oct. 2016.
[28] C.-H. Lin, C.-Y. Chi, Y.-H. Wang, and T.-H. Chan, “A fast hyperplane-based
minimum-volume enclosing simplex algorithm for blind hyperspectral unmixing,”
IEEE Trans. Signal Process., vol. 64, no. 8, pp. 1946–1961, Apr. 2016.
[29] J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex component analysis: A fast
algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens.,
vol. 43, no. 4, pp. 898–910, Apr. 2005.
[30] AVIRIS Free Standard Data Products. [Online]. Available: http://aviris.jpl.
nasa.gov/html/aviris.freedata.html
[31] G. Swayze, R. N. Clark, F. Kruse, S. Sutley, and A. Gallagher, “Ground-truthing
AVIRIS mineral mapping at Cuprite, Nevada,” in Proc. Summaries 3rd Annu.
JPL Airborne Geosci. Workshop, vol. 1, 1992, pp. 47–49.
[32] J. M. P. Nascimento and J. M. Bioucas-Dias, “Hyperspectral unmixing based on
mixtures of Dirichlet components,” IEEE Trans. Geosci. Remote Sens., vol. 50,
no. 3, pp. 863–878, Mar. 2012.
[33] C.-Y. Chi, W.-C. Li, and C.-H. Lin, Convex Optimization for Signal Processing
and Communications: From Fundamentals to Applications. Boca Raton, FL,
USA: CRC Press, 2017.
[34] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of
block successive minimization methods for nonsmooth optimization,” SIAM J.
Optim., vol. 23, no.2, pp. 1126–1153, 2013.