簡易檢索 / 詳目顯示

研究生: 陳獻鑫
Chen, Shian-Sin
論文名稱: 小角度X光散射及電子顯微鏡研究以圓盤型微胞為模板成長之矽酸鹽多孔性奈米材料
Small-Angle X-ray Scattering and TEM Studies on Mesoporous Silicates Templated with Disc-Shaped Bicelles
指導教授: 林滄浪
胡瑗
口試委員: 鄭有舜
王本誠
林滄浪
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 88
中文關鍵詞: 孔洞材料小角度散射
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究使用原盤狀微胞作為模板成長有序矽酸鹽中孔洞奈米材料。實驗以長鏈磷脂分子DPPC及短鏈的DiC7PC 以三比一的比例混合於水溶液中形成直徑約20 nm圓盤型微胞,並添加帶正電的DC-Chol或帶負電的DPPG形成帶電微胞。在含圓盤型微胞的水溶液中加入四甲氧基矽烷(TMOS),使其沈積在微胞表面,形成有機-無機複合中孔洞結構材料。研究結果發現主要會形成由圓盤型微胞堆疊成長條的結構,亦會有多層層狀結構共存;在特定狀況下,例如帶有10%以上之正電荷圓盤型微胞,並不會堆疊,只會形成包覆單一盤狀分散的粒子,因單一的矽酸鹽分子解離的負電荷都全吸附在單一的正電荷圓盤型微胞模板上,此矽酸鹽分子就被中性化,不再有剩餘的負電荷連接到其它圓盤狀微胞上,故不會造成圓盤型微胞堆疊,僅形成單一圓盤狀結構;若亦加入NH4F促進TMOS解離,則可以形成良好的長條堆疊的結構,因此時高度解離的矽酸鹽分子上的負電荷可以將帶正電荷圓盤型微胞連結。若使用負電荷圓盤型微胞,在5% DPPG 時,會形成圓盤型橫向連接數個及縱向連續堆疊的長條結構。在10%及30% DPPG 時,只會形成圓盤縱向連續堆疊的寬度約咯整齊的長條結構。但在15% DPPG時則會形成不太規則間距略大的堆疊結構及少量間距較大的堆疊結構,若加入NH4F則會形成寬度不整齊的長條形堆疊。當DPPG的含量增加到30%時,可藉由DPPG解離的鈉離子形成較穩定的橋接,而形成的長條堆疊結構。pH值亦會影響矽酸鹽的地積自組裝結構,在水溶液為pH 2時,對DPPC圓盤微胞、含15% DPPG的圓盤微胞及含15% DC-Chol的圓盤微胞模板,都會形成多條聚集成的長條堆疊結構,圓盤微胞模板除了平板面相連接,側邊也會連接,因此會形成徑向由數個圓盤微胞組成,縱向由圓盤堆疊成長條。但15% DPPG的圓盤微胞模板,pH2時所形成的多條聚集成的長條形堆疊結構寬度較不整齊,15% DC-Chol及DPPC的圓盤微胞模板則形成寬度較齊一的多條聚集成的長條堆疊結構。pH高於2時,對含15% DPPG的圓盤微胞模板,圓盤微胞模板則大都堆疊成不規則獨立或相連團塊。對中性的圓盤微胞模板,在pH 3時會形成寬度較齊一的單一長條堆疊結構,隨pH值上升,多層層狀結構增多,而單一長條堆疊結構變少。在較高的酸性情況下,如pH2,矽酸鹽有較慢的解離及縮合速率,使矽酸鹽有沈積及新解離的到達,使圓盤微胞模板除了平板面連接,側邊也會連接,因此會形成多條聚集成的長條堆疊結構,以及會出現由圓盤以垂直於圓盤面方式用側邊連接而呈現橢圓孔。另外也研究將前驅物硝酸銀(AgNO3)浸泡於合成好之中孔洞材料水溶液中,待銀離子吸附於表面後再添加還原劑NaBH4還原為銀離子,實驗結果顯示銀離子可吸附在表面並還原,亦可使原本結構為單盤狀之正電荷模板系統轉化為長條狀結構。


    Small-Angle X-ray scattering (SAXS) and TEM were used to investigate the structural properties of mesoporous silica materials prepared by condensation of tetramethyl orthosilicate on the zwitterionic bicelle, cationic bicelle, anionic bicelle and cationic bicelle-DNA complex. Using zwitterionic bicelles (mixing DPPC and diC7PC at a ratio of 3:1), thread-like structure formed by one-dimensionally stacked discs ( Å-1) as well as lamellar structure ( Å-1) would be formed in coexistence. The lamellar structure was formed with fused bicelles that have a thinner bilayer thickness. With the doping of cationic lipids above about 10%, only isolated discs were formed with a coating of silicate layer. The hydrolyzed TMOS molecules are adsorbed to single cationic bicelle due to the strong attraction of the positive charges on the cationic bicelle surface. However, with the presence of NH4F which could accelerate the hydrolysis of TMOS, thread-like structure was formed by stacking discs into long thread. With the doping of 5% DPPG, which is a negatively charged lipid, bundles of stacking disc threads were formed. With 10 % and 30% DPPG, isolated threads were formed by stacking discs. However, with 15% DPPG, irregular stacking of the discs would be formed with different d-spacings ( and 0.107 Å-1). At low pH, such as pH 2, both the hydrolysis rate and condensation rate of TMOS becomes much lower, other than stacking on the disc face, the discs are also connected side-by-side to form bundles of long structure. Increasing the pH higher than 2, the side-to-side disc connection are significantly reduced.

    目錄 第一章 緒論 1 1.1孔洞材料之應用 1 1.1.1 觸媒、半導體及太陽能電池之應用 1 1.1.2多孔洞矽奈米顆粒在生醫之應用 2 1.2 中孔洞材料之製備 3 1.3 界面活性劑與自組裝行為 4 1.3.1微胞體(Micelle) 5 1.3.2 磷脂質(Lipid) 6 1.4 矽酸鹽水解縮合反應 8 第二章 文獻回顧 10 2.1 中孔洞材料合成機制 10 2.2 矽酸鹽與界面活性劑間各式交互作用 12 2.3 以磷脂質為模板合成中孔洞材料 13 2.4 研究動機 17 第三章 小角度散射理論 18 3.1 X-ray小角度散射基本理論 18 3.2 形狀因子模型分析 21 3.3 小角度散射數據分析 23 第四章 實驗方法 24 4.1 實驗藥品 24 4.2 實驗流程 25 4.2.1 磷脂質模板之合成 25 4.2.2 以Bicelle為模板合成中孔洞材料 27 4.2.3 於中孔洞材料表面包覆銀奈米層 28 4.3 實驗儀器 29 4.3.1 X光小角度散射光束線 29 4.3.2 穿透式電子顯微鏡 31 4.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy) 33 第五章 結果與討論 35 5.1 探討以盤狀bicelle為模板之結構 35 5.1.1 模板電性對結構的影響 35 5.1.2 帶電量對各種電性模板結構的影響 41 5.1.3 pH值對各種電性模板結構的影響 49 5.2 探討以DNA與盤狀bicelle複合物為模板之結構 62 5.2.1 不同電量之bicelle-DNA複合物模板對結構的影響 62 5.2.2 DNA濃度對CBM30-DNA系統結構的影響 66 5.3 探討以ribbon-like bicelle為模板之結構 70 5.4 以硝酸銀合成表面包覆銀奈米層之孔洞材料 74 5.4.1 以BM系統包覆銀奈米層 74 5.4.2 以ABM-30系統包覆銀奈米層 75 5.4.3 以CBM-30系統包覆銀奈米層 77 5.4.4 以BM1、BM6、BM9系統包覆銀奈米層 78 第六章 結論 82 參考文獻 84 附 錄 87

    參考文獻
    [1] A.F. Cronstedt , Kongl Vetenskaps Academiens Handlingar Stockholm, 1756,17, 120.
    [2] D. W. Breck, “Zeolite Molecular Sieves: Structure, Chemistry and Use”, John Wiley, London, 1974.
    [3] IUPAC Manual of Symbols and Terminology, Appendix 2, Part I, Colloid and surface chemistry, Pure Appl. Chem., 1972, 31, 578.
    [4] X. Liu, A. Wang, X. Wang, C.-Y. Mou, T. Zhang, Chem Commun (Camb), 2008, 27, 3187.
    [5] A.T. Cho, F.M. Pan, K.J. Chao, P.H. Liu, J.Y. Chen, Thin Solid Films, 2005, 483, 283.
    [6] Brian O'Regan, Michael Grätzel, Nature, 1991, 353, 24.
    [7] F. Tang, L. Li, D. Chen, Adv Mater, 2012, 24, 1504.
    [8] Naomi J. Halas, ACSNANO, 2008, 2, 179.
    [9] A. E. Garcia-Bennett, Nanomedicine-UK, 2011, 6, 867.
    [10] N. K. Mal, M. Fujiwara, Y. Tanaka, Nature, 2003, 421, 350.
    [11] C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. Lin
    , J. Am. Chem. Soc., 2003, 125, 4451.
    [12] Yu-Shen Lin, Christy L. Haynes, Chem. Mater., 2009, 21, 17.
    [13] J. S. Beck, J. C. VartUli, W. J. Roth, J. Am. Chem. SOC., 1992, 114, 10834.
    [14] H. Qisheng, Nature, 1994, 368, 24.
    [15] Paritosh Mohanty, Jinwoo Lee, Kerney Jebrell Glover, Kai Landskron, Nanoscale ResLett, 2011, 6, 61.
    [16] T.F. Todros, “Surfactants”, Academic Press, London, 1984.
    [17] J. Patarin, Chem. Rev., 2002, 102, 4093.
    [18] N. Israelachvili, J. Chem. Soc., 1976, 72, 1525.
    [19] J. Israelachvili, “Intermolecular and Surface Forces, 2nd ”,Academic Press, New York, 1992.
    [20] A. Gerschel, “Liaisons Intermoleculaires, Les Forces en Jeu dans la Matiere Condensee”, Intereditions/CNRS Editions: Paris, France, 1995.
    [21] D. F. Evans, H. Wennerstrom, “The Colloidal Domain Where Physics, Chemistry, Biology and Technology Meet”, VCH Publishers: Weinheim, Germany, 1994.
    [22] Po-Wei Yang, Tsang-Lang Lin, Yuan Hu, U-Ser Jeng, CHINESE JOURNAL OF PHYSICS, 2012, 50, 2.
    [23] M. P. Nieh, Langmui, 2011, 27, 14308.
    [24] C. J. Brinker, G. W. Scherer, “Sol-gel science, the physics and chemistry of sol–gel processing”, Academic Press, Boston, 1990.
    [25] R.K. Iler, “The Chemistry of Silica”, John Wiley, New York, 1979.
    [26] A. Monnier, SCIENCE, 1993, 261.
    [27] Qisheng Huo, David I Margolese, Ulrike Clesla, Nature, 1994, 368.
    [28] F. Hoffmann , et al., Angew. Chem, 2006, 45, 3216.
    [29] Katagiri, K., et al., Chemistry, 2007, 13,18, 5272.
    [30] K. Yasuhara, Chem Commun (Camb), 2011, 47,16, 4691.
    [31] P. Mohanty, Nanoscale Res Lett, 2010, 6,1, 61.
    [32] W.C. Marshall, S.W. Lovesey, “Theory of Thermal Neutron Scattering”, Clarendon, Oxford, 1971.
    [33] A. Feigin, D.I. Srgun, “Structure Analysis by Small-Angle X-ray and Neutron Scattering”, Plenum Press, N.Y. and London, 1987.
    [34] http://www.materialsnet.com.tw
    [35] http://microscope.cgu.edu.tw
    [36] 汪建民, “材料分析”,中國材料科學學會, 1998

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE