簡易檢索 / 詳目顯示

研究生: 蘇禹徹
Su, Yu-Che
論文名稱: 模板效應對磁控濺鍍之氮化釩薄膜織構演變之影響
Template Effect on Texture Evolution of VN Thin Films Deposited by Unbalanced Magnetron Sputtering
指導教授: 黃嘉宏
Huang, Jia-Hong
喻冀平
Yu, Ge-Ping
口試委員: 李志偉
Lee, Jyh-Wei
呂福興
Lu, Fu-Hsing
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 81
中文關鍵詞: 氮化釩介層模板織構
外文關鍵詞: Vanadium, Nitride, Texture, Template
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的是探討不同模板(釩和鈦)對於非平衡磁控濺鍍之氮化釩薄膜織構演變及其性質的影響。基本的構想是希望藉由織構為(0002)的鈦模板來改善具有(111)織構之氮化釩的微結構,並使其從zone-1結構變成較緻密之zone-T結構,進一步改善其機械性質。另一方面,由於釩晶體結構的(110)面與氮化釩的(200)面相似,所以釩模板或許可以使氮化釩薄膜之(200)面長得更好,並優化其性質。本研究利用平衡磁控濺鍍製備氮化釩試片。試片分成兩部分,第一部分試片的鍍膜參數為300℃、-70 V基板偏壓、氮流量由1.5 至 3.5 sccm;第二部分試片鍍製於室溫下且無基板偏壓,氮流量控制在12 sccm。每個參數條件的氮化釩薄膜皆分別鍍製單層、與在鈦及釩模板上。鍍膜後,測量其織構係數及薄膜性質。然而實驗結果卻與原先預期相反,鈦模板及釩模板皆可以提升氮化釩薄膜之(111)織構,而且微結構緻密程度隨著(111)織構增加而下降。釩模板提升氮化釩(111)織構的機制可能是藉由釩膜板讓氮化釩(200)面長得更好更平滑,進而使氮化釩(200)面上的吸附原子能遷移到(111)面上,而促進(111)織構成長。鈦模板僅能在高氮流量且低鍍率下透過局部磊晶的效果提升(111)織構。在性質方面,硬度及殘留應力皆隨(111)織構增加而下降,可能是氮化釩本質上偏好長(200)面,所以成長較不偏好的(111)織構會使結構變得較為鬆散,導致硬度及殘留應力下降。此外,鈦模板對氮化釩織構與性質的優化不如鈦模板對氮化鈦顯著,因此鈦模板雖然可以促進氮化釩(111)織構成長,卻不能明顯改善其微結構,因而無法提升薄膜機械性質。實驗結果亦發現,第一部分氮化釩試片的電阻與結晶度及化學計量比有關,第二部分氮化釩試片電阻較高則與其較為鬆散的zone-1結構有關。


    The purpose of this study was to investigate the effect of different templates (V and Ti) on the texture evolution and the accompanying properties of VN thin films. Ti (0002) template was used to change the microstructure of (111)-textured VN thin films from zone I to zone T, and further improving the mechanical properties of the films. In contrast, the atomic configuration of V(110) is similar to that of VN(200), and thus V (110) template may facilitate the formation of VN(200) texture and improve the properties of the VN films. VN thin films were deposited by unbalanced magnetron sputtering. Specimens were divided in two groups, group I specimens were deposited with nitrogen flow rates ranging from 1.5 to 3.5 sccm and substrate bias of -70V at 300℃, and group II specimens were deposited at room temperature with a fixed nitrogen flow rate of 12 sccm and without bias. Each group contained single layer VN, VN with Ti template and with V template. After deposition, texture coefficient (TC) and film properties were measured. From the results, both Ti and V templates could enhance the growth of (111) texture, which was against the expected results, and the film structure became less dense with increasing TC(111). The enhancement of (111) texture by V template may be due to the formation of smooth VN(200) by the assistance of V template, which could not retard the migration of adatoms from (200) to (111), thus promoting the growth of (111) texture. On the other hand, Ti template only enhanced (111) texture by local epitaxy effect at low deposition rate and high nitrogen flow rate. Both hardness and residual stress of the VN films decreased with increasing TC(111), which should be resulted from less dense film structure caused by the unfavorable (111) texture. Unlike the case in introducing Ti template in TiN, using a Ti (0002) template may enhance the (111) texture but could not densify the (111) textured VN films and therefore could not improve the mechanical properties. Electrical resistivity of the VN films was related to crystallinity and stoichiometry of the group I specimens, while the high resistivity of the group II specimens was mainly due to the loose-packed zone-I structure.

    致謝……………….……………………………………………………………………………i 摘要……………………………………………………………………………………………ii Abstract………………………………………………………………………………….…...iii Content……………………………………………………………………………………….iv List of Figures………………………………………………………………………...…….viii List of Tables………………………………………........................………………….….…...x Chapter 1 Introduction…………………….........................................................................1 Chapter 2 Literature Review………………………………………………………………3 2.1 Deposition Method…………………………………………………………………...3 2.2 Structure Zone Models…………………………………………………………….…3 2.3 Characteristics of VN………………………………………………………………...6 2.4 Superior Properties of VN……………………………………………………………8 2.5 Theories of Texture evolution for TMeN thin films…………………………….……9 2.5.1 Overall Energy Theory………………………………………................……..9 2.5.2 Competitive Growth Theory……………….....................................................9 2.6 Effects of Process Parameters on the Texture and Crystal Structure of VN Thin films…………………………………………………………….………...11 2.7 Effect of Template…………………………………………………………………..12 2.8 Effect of Texture on Mechanical Properties………………………………………...14 2.8.1 Hardness………………………………………………………………….….14 2.8.2 Residual Stress………………………………………………………………15 2.8.3 Fracture toughness…………………………………………….……………..15 Chapter 3 Experimental Details……………………………………………………….…16 3.1 Specimen Preparation and Deposition Process……………………………………...16 3.2 Characterization of Composition and Film Structure………………………………..20 3.2.1 Chemical Composition……………………………………………………....20 3.2.2 Crystal Structure and Preferred Orientation……………………………...…..21 3.2.3 Cross-sectional Microstructure and Plan-View Morphology…………….…..22 3.2.4 Surface Roughness and Morphology………………………………....…...…23 3.3 Characterization of Film Properties………………………………………....………23 3.3.1 Hardness and Elastic Constant………………………………………….……23 3.3.2 Residual Stress…………………………………………………………….....24 3.3.3 Electrical Resistivity……………………………………………...............….26 3.3.4 Coloration……………………………………………………………………28 Chapter 4 Results…………………………………………….………..…….…29 4.1 Chemical Composition and Structure…………………………………………….…29 4.1.1 Chemical compositions………………………………………………………29 4.1.2 Cross-Sectional Microstructure and Surface Morphology…………………...35 4.1.3 Crystal Structure and Texture Evolution……………………………………..38 4.1.4 Surface Roughness………………………………...…………………………44 4.2 Properties……………………………………………………………………………45 4.2.1 Hardness and Elastic Constant……………………………………………….45 4.2.2 Residual Stress……………………………………………………………….47 4.2.3 Electrical Resistivity…………………………………………………………49 4.2.4 Coloration……………………………………………………………………51 Chapter 5 Discussion……………………………………………..……………………….52 5.1 Template Effect on Texture Evolution of VN Thin Films……………………....……52 5.1.1 Ti Template…………………………………………………………………..52 5.1.2 V Template…………………………………………………………………...56 5.2 Microstructure and Surface Morphology……………………………………………57 5.3 Effect of Template and Texture on Mechanical and Electrical Properties……………58 5.3.1 Hardness……………………………………………………………………..58 5.3.2 Residual Stress……………………………………………………………….60 5.3.3 Electrical Resistivity…………………………………………………………60 Chapter 6 Conclusions…………………………………………………………………....62 Reference…………………………………………………………………………………….63 Appendix A XPS spectra peaks integration results…………………….....………………71 Appendix B X-ray residual stress results………………………………………………….80 List of Figures Fig. 1.1 (a) The atomic configuration of BCC(110) plane and NaCl (200) plane. (b) The atomic configuration of HCP (0002) plane and NaCl (111) plane…………………………………….3 Fig. 2.1 (a) SZM for thick evaporated metal coatings proposed by Movchan and Demchishin [23], and (b) SZM for sputtered metal coatings modified by Thornton [24]………… ....……5 Fig. 2.2 (a) SZM for RF sputtered coatings modified by Messier et al., by replacing the axe from argon pressure with substrate bias [25], and (b) SZM with generalized parameters modified by Anders [28] ………………………………………….…………...…...……….…6 Fig. 2.3 The V-N phase diagram[29]……………………………………………………......….7 Fig. 2.4 The crystal structure of VN………………………………………………...……….....7 Fig. 3.1 The schematic diagram of UBMS system……………………………………………17 Fig. 3.2 The flowchart of experimental procedures…………………………………………..18  Fig. 3.3 Schematic diagram of laser curvature measurement apparatus …………………..….25 Fig. 3.4 Schematic diagram of four point probe…..………………………………………….26 Fig. 3.5 The schematic diagram of color space with L* a* and b* coordinates [68]…………..28 Fig. 4.1 AES depth profiles for specimens (a)VT3, (b)VV3, (c)VVR, and (d)VR. The compositions were calibrated by XPS and the depth was calibrated by the corresponding SEM image…………………………………………………………………………………………34 Fig. 4.2 SEM cross-sectional images of specimens V1, V2,V3, and VR…………....….……..36. Fig. 4.3 SEM cross-sectional images of specimens VT1, VT2, VT3, and VTR……….…..…36 Fig. 4.4 SEM cross-sectional images of specimens VV1, VV2, VV3, and VVR……..…........36 Fig. 4.5 SEM surface morphology of specimens V1, V2, V3, and VR……………………....37 Fig. 4.6 SEM surface morphology of specimens VT1, VT2, VT3, and VTR…………………37 Fig. 4.7 SEM surface morphology of specimens VV1, VV2, VV3, and VVR………………..37 Fig. 4.8 The XRD patterns of (a) single-layer VN, and VN films with (b) Ti and (c) V templates……………………………………………………………………………………...40 Fig. 4.9 The texture evolution of the first group specimens VN with increasing nitrogen flow rats from 1.5 to 3.5 sccm………………………………………………..…………...…….....41 Fig. 4.10 Texture coefficient of (a)1-, (b)2-, (c)3-, and (d) R-series VN specimens……....…42 Fig. 4.11 The GIXRD patterns of (a) single layer VN, and VN films with (b) Ti and (c) V templates……………………………………………………………………………………...43 Fig. 4.12 The AFM images of Single layer VN……………………………………………….44 Fig. 4.13 The AFM images of VN with Ti template…………………………………………..44 Fig. 4.14 The AFM images of VN with V template…………………………..……….………44 Fig. 4.15 Hardness of (a)1-, (b)2-, (c)3-, and (d) R-series VN specimens………….…….…..46 Fig. 4.16 Hardness vs (111) texture coefficient of VN specimens…………………..…….….46 Fig. 4.17 Residual stress of (a)1-, (b)2-, (c)3-, and (d) R-series VN specimens……………...48 Fig. 4.18 The variation of residual stress with (111) texture coefficient for the VN specimens…………………………………………………………………………………….48 Fig. 4.19 Electrical Resistivity of (a)1-, (b)2-, (c)3-, and (d) R-series VN specimens………50 Fig. 4.20 The variation of electrical resistivity with (111) texture coefficient for the VN specimens…………………………………………………………………………………….50 Fig. 5.1 Comparison flow chart of single layer VN and VN with Ti template…………….....53 Fig. 5.2 Deposition rates of 1-, 2-, 3- and R-series specimens………………………………...56 Fig. 5.3 The SEM cross-sectional images of VV2 and VV3……………………..…….……...60 Fig. A.1 XPS spectra peaks integration of (a) V-2p (b) N-1s (c) O-1s for specimen V1…….71 Fig. A.2 XPS spectra peaks integration of (a) V-2p (b) N-1s (c) O-1s for specimen V2………72 Fig. A.3 XPS spectra peaks integration of (a) V-2p (b) N-1s (c) O-1s for specimen V3………73 Fig. A.4 XPS spectra peaks integration of (a) V-2p (b) N-1s (c) O-1s for specimen VT1……..74 Fig. A.5 XPS spectra peaks integration of (a) V-2p (b) N-1s (c) O-1s for specimen VT2……..75 Fig. A.6 XPS spectra peaks integration of (a) V-2p (b) N-1s (c) O-1s for specimen VT3……..76 Fig. A.7 XPS spectra peaks integration of (a) V-2p (b) N-1s (c) O-1s for specimen VTR….....77 Fig. A.8 XPS spectra peaks integration of (a) V-2p (b) N-1s (c) O-1s for specimen VV1……78 Fig. A.9 XPS spectra peaks integration of (a) V-2p (b) N-1s (c) O-1s for specimen VV2……79 Fig. B.1 AXS method X-ray residual stress plot of specimen V1……………………………..80 Fig. B.2 AXS method X-ray residual stress plot of specimen V3……………………………81 Fig. B.3 AXS method X-ray residual stress plot of specimen VT1………………………........82   List of Tables Table 2.1 Characteristics of VN……………………………………………………………….8 Table 3.1 The deposition condition of Ti and V templates…………………………………..18 Table 3.2 The deposition condition of VN films…………………………………………….19 Table 3.3 The designation of specimens and the corresponding deposition condition….…..19 Table 3.4 The binding energies of VN, 〖"VN" 〗_"-s" , "V" _"2" "O" _"3" , 〖"VO" 〗_"2" , "V" _2 "O" _5 for "V-" "2" _"p" , "N-" "1" _"s" , "O-" "1" _"s" [52-56]…………………………………………………………………………….………..21 Table 3.5 The correction factor for different d/s and d/a ratios [65]........................................27 Table 4.1 Summary of thickness, chemical composition, texture coefficient, FWHM, grain size and lattice parameter of VN films………………………………………………….……31 Table 4.2 Summary of hardness, elastic constant, residual stress, electrical resistivity, and roughness of VN films…………………………………………………………………….....32

    References
    [1] B.M. Howe, E. Sammann, J.G. Wen, T. Spila, J.E. Greene, L. Hultman, I. Petrov, Real-time control of AlN incorporation in epitaxial Hf1-xAlxN using high-flux, low-energy (10-40 eV) ion bombardment during reactive magnetron sputter deposition from a Hf0.7Al0.3 alloy target, Acta Mater. 59 (2011) 421-428.
    [2] P.H. Mayhofer, F.D. Fischer, H.J. Böhm, C. Mitterer, J.M. Schneider, Energetic balance and kinetics for the decomposition of supersaturated Ti1-xAlxN, Acta Mater. 55 (2007) 1441-1446.
    [3] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Decorative hard coatings with improved corrosion resistance, Surf. Coat. Technol. 112 (1999) 108-113.
    [4] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coat. Technol. 41 (1990) 191-204.
    [5] L.L. Wei, Effect of Preferred Orientation on the Fracture Toughness of VN Hard Coatings, Master Thesis, National Tsing Hua University, Taiwan, R.O.C. (2016)
    [6] G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Kathrein, Tribol. Lett,. A New Low Friction Concept for High Temperatures: Lubricious Oxide Formation on Sputtered VN Coatings, Tribol. Lett. 17 (2004) 751-756.
    [7] H. W. Hsiao, J. H. Huang, and G. P. Yu, Surf., Effect of oxygen on fracture toughness of Zr(N,O) hard coating, Surf. Coat. Technol. 304 (2016) 330-339.
    [8] W. J. Chou, G. P. Yu, and J. H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surf. Coat. Technol. 149, 1. (2002) 7-13.
    [9] L. Hultman, M. Shinn, P.B. Mirkarimi, S.A. Barnett, Characterization of misfit dislocations in epitaxial (001)-oriented TiN, NbN, VN, and (Ti,Nb)N film heterostructures by transmission electron microscopy J. Cryst. Growth 135 (1994) 309-317.
    [10] J.-H. Huang, Y.-H. Chen, A.-N. Wang, G.-P. Yu, H. Chen, Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method, Surf. Coat. Technol. 258 (2014) 211-218.
    [11] C.T. Chen, Y.C. Song, G.-P. Yu, J.-H. Huang, Microstructure and Hardness of Hollow Cathode Discharge Ion-Plated Titanium Nitride Film, J. Mater. Eng. Perform. 7(1998) 324-328.
    [12] M. Kobayashi, Y. Doi, TiN and TiC coating on cemented carbides by ion plating, Thin Solid Films, 54 (1978) 67-74
    [13] C.H. Lin, Texture Evolution of VN Thin Films, Master Thesis, National Tsing Hua University, Taiwan, R.O.C. (2016)
    [14] J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films 197 (1991) 117-128.
    [15] D. Gall, S. Kodambaka, M. Wall, I. Petrov, J.E. Greene, Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys., 93 (2003) 9086-9094.
    [16] J.-S. Chun, I. Petrov, J.E. Greene, Dense fully 111-textured TiN diffusion barriers: Enhanced lifetime through microstructure control during layer growth, J. Appl. Phys., 86 (7) (1999), p. 3633
    [17] J.-H. Huang, Y.-P. Tsai, G.-P. Yu, Effect of processing parameters on the microstructure and mechanical properties of TiN film on stainless steel by HCD ion plating, Thin Solid Films, 355–356 (1999), p. 440
    [18] L. Hultman, J.-E. Sundgren, J.E. Greene, D.B. Bergstrom, I. Petrov, High-flux low-energy (-20 eV) N2+ ion irradiation during TiN depositionby reactive magnetron sputtering: Effects on microstructure and preferred orientation, J. Appl. Phys. 78, (1995) 5395-5403.
    [19] S. J. Bull, P. R. Chalker, C. F. Ayres and D. S. Rickerby, The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma-assisted chemical vapor-deposition, Mater. Sci. Eng. A 139, (1991), 71-78.
    [20] S. Lei, J.-H. Huang, Haydn Chen, Measurement of residual stress on TiN/Ti bilayer thin films using average X-ray strain combined with laser curvature and nanoindentation methods, Mater. Chem. Phys. 199, 15 ( 2017), 185-192.
    [21] J.-H. Huang, F.-Y. Ouyang, G.-P. Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel, Surf. Coat. Technol. 201 (2007) 7043–7053.
    [22] B. Window and N. Savvides, Unbalanced dc magnetrons as sources of high ion fluxes, J. Vac. Sci. Technol. A4, (1986) 196-202.
    [23] B.A. Movchan, A.V. Demchishin, Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide, Phys. Met. Metallogr., 28 (1969) 83-90.
    [24] J.A.Thornton, High rate thick film growth, Ann. Rev. Mater. Sci. 7, (1977) 239-260
    [25] R. Messier, A.P. Giri, R.A. Roy, Revised structure zone model for thin film physical structure, J. Vac. Sci. Technol. A2, (1984) 500-503
    [26] S.J. Bull, A.M. Jones, A.R. McCabe, Residual stress in ion-assisted coatings, Surf. Coat. Technol. 54, (1992) 173-179
    [27] J.E. Yehoda, B. Yang, K. Vedam, R. Messier, Investigation of the void structure in amorphous germanium thin films as a function of low‐energy ion bombardment, J. Vac. Sci. Technol. A6, (1988) 1631-1635.
    [28] A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films 518, (2010) 4087-4090.
    [29] H. Okamoto, N-V (Nitrogen-Vanadium), J. Phase Equilib. 22 (2001) 362-362.
    [30] JCPDS file 65-0437.
    [31] Hugh O. Pierson, Handbook of Refractory Carbides and Nitrides, 1st edition, Noyes Publications, (1996) 201
    [32] Y. Qiu, S. Zhang, B. Li, J-W Lee, D. Zhao, Influence of Nitrogen Partial Pressure and Substrate Bias on the Mechanical Properties of VN Coatings, Procedia Eng. 36 (2012) 217-225.
    [33] A.B. Mei, R.B. Wilson, D. Li, David G. Cahill, A. Rockett, J. Birch, L. Hultman, J.E. Greene, I. Petrov, Elastic constants, Poisson ratios, and the elastic anisotropy of VN(001), (011), and (111) epitaxial layers grown by reactive magnetron sputter deposition, J.Appl. Phys., 115 (2014) 214908.
    [34] X. Chu, S.A. Barnett, M.S. Wong, W.D. Sproul, Reactive magnetron sputter deposition of polycrystalline vanadium nitride films, J. Vac. Sci. Technol. A 14 (1996) 3124-3129.
    [35] M.B. Takeyama, T. Itoi, K. Satoh, M. Sakagami, A. Nyoa, Application of thin nanocrystalline VN film as a high-performance diffusion barrier between Cu and SiO2 J. Vac. Sci. Technol. B 22 (2004) 2542-2547.
    [36] J.C. Caicedo, G. Zambrano, W. Aperador, L. Escobar-Alarcon, E. Camps, Mechanical and electrochemical characterization of vanadium nitride (VN) thin films, Appl. Surf. Sci., 258 (2011) 312-320.
    [37] A. Magne´li, Structures of the ReO3-type with recurrent dislocations of atoms: `homologous series' of molybdenum and tungsten oxides, Acta Crystallography. 6 (1953) 495-500.
    [38] D.G. Sangiovanni, L. Hultman, V. Chirita, Acta Materialia,, Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration, Acta Mater. 59 2121-2134 (2011).
    [39] U. Helmersson, S. Todorova, S. A. Barnett, J.-E. Sundgren, L. C. Markert, and J. E. Greene, Growth of single‐crystal TiN/VN strained‐layer superlattices with extremely high mechanical hardness, J. Appl. Phys. 62, 481 (1987)
    [40] U.C. Oh, J.H. Je, Effects of strain energy on the preferred orientation of TiN thin films, J. Appl. Phys. 74 (1993) 1692-1696.
    [41] J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition, J. Phys. D 30 (1997) 5-12.
    [42] D. G. Sangiovanni, A. B. Mei, L. Hultman, V. Chirita, I. Petrov, J. E. Greene, Ab Initio Molecular Dynamics Simulations of Nitrogen/VN(001) Surface Reactions: Vacancy-Catalyzed N-2 Dissociative Chemisorption, N Adatom Migration, and N-2 Desorption, J. Phys. Chem. C (2016) 12503-12516.
    [43] C.-H. Ma, J.-H. Huang, Haydn Chen, A study of preferred orientation of vanadium nitride and zirconium nitride coatings on silicon prepared by ion beam assisted deposition, Surf. Coat. Technol., 133-134 (2000) 289-294.
    [44] C.K. Wu, Optimization of the deposition processing of VN thin films by design of experiment and single variable (nitrogen flow rate) methods, Master Thesis, National Tsing Hua University, Taiwan, R.O.C. (2015).
    [45] Y.H. Tsui, Effect of substrate bias on structure and properties of VN thin films deposited by unbalanced magnetron sputtering, Master Thesis, National Tsing Hua University, Taiwan, R.O.C. (2016)
    [46] J.-H. Huang, C.-H. Ma, Haydn Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films, Surf. Coat. Technol. 200 (2006) 5937.
    [47] J.-H. Huang, C.-H. Ma, Haydn Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films deposited by unbalanced magnetron sputtering, Surf. Coat. Technol. 201 (2006) 3199.
    [48] C.-H. Ma, J.-H. Huang, Haydn Chen, Nanohardness of nanocrystalline TiN thin films, Surf. Coat. Technol. Volume 200, Issues 12–13, 31 (2006) 3868-3875

    [49] Jakob Schiøtz, Karsten W. Jacobsen, A Maximun in the Strength of Nanocrystalline Copper, Science 301 (2003) 1357-1359.
    [50] G. Abadias, Y.Y. Tse, Diffraction stress analysis in fiber-textured TiN thin films grown by ion-beam sputtering: Application to (001) and mixed (001)+(111) texture, J. Appl. Phys. 95, (2004) 2414-2428.
    [51] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valance bands of gold, Phys. Rev. B, 5 (1972) 4709-4714.
    [52] M.Y. Liao, Y. Gotoh, H. Tsuji, J. Ishikawa, Crystallographic structure and composition of vanadium nitride thin films deposited by direct sputtering of a compound target, J. Vac. Sci. Technol. A, 22 (2004) 146-150.
    [53] R.T. Haasch, T,-Y. Lee, D. Gall, J.E. Greene, I. Petrov, Epitaxial VN(001) Grown and Analyzed In situ by XPS and UPS. I. Analysis of As-deposited Layers, Surf. Sci. Spectra, 7 (2000) 221-232.
    [54] A.M. Glushenkov, D. Hulicova-Jurcakova, D. Llewellyn, G.Q. Lu, Y. Chen, Structure and Capactive Properties of Porous Nanocrystalline VN Prepared by Temperature-Programmed Ammonia Reduction of V2O5, Chem. Mater. 22 (2010) 914-921.
    [55] Z. Zhao, Y. Liu, H. Cao, J. Ye, S. Gao, M. Tu, Synthesis of VN nanopowders by thermal nitridation of the precursor and their characterization, J. Alloys Compd. 464 (2008) 75-80.
    [56] J.-G. Choi, The surface properties of vanadium compounds by X-ray photoelectron spectroscopy, Appl. Surf. Sci. 148 (1999) 64-72.
    [57] P. Scherrer, Bestimmung der Grösse und der inner Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr. 2 (1918) 98-100.
    [58] L.V. Azaroff, M.J. Buerger, The power method in X-ray crystallography, McGraw-Hill, 1958.
    [59] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
    [60] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. A Mat., 82 (1909) 172-175.
    [61] W. Nix, Mechanical properties of thin films, Metall. Trans. A, 20 (1989) 2217-2245.
    [62] C.H. Ma, J.H. Huang, and H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray, Thin Solid Films, 418 (2002) 73-78.
    [63] An-Ni Wang, Chih-Pin Chuang, Ge-Ping Yu, Jia-Hong Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ X-ray diffraction method, Surf. Coat. Technol. 262 (2015) 40-47.
    [64] An-Ni Wang, Jia-Hong Huang, Haw-Wen Hsiao, Ge-Ping Yu, Haydn Chen, Residual stress measurement on TiN thin films by combing nanoindentation and average X-ray strain (AXS) method Surf. Coat. Technol. 280 (2015) 43-49.
    [65] S.M. Sze, VLSI technology, McGraw-Hill, (1983).
    [66] CIE, Colorimetry, Tech. Rept., 15, Bureau Central de la CIE, Paris (1971).
    [67] CIE, Recommendations on uniform color spaces, color difference equation and psychometric terms, Supplement No.2 to CIE publication No.15, Tech. Rept., Bureau Central dela CIE, Paris (1978).
    [68] ASTM, Symposium on Color, American Society for Testing Materials, Philadelphia (1941).
    [69] W. Ensinger, Low energy ion assist during deposition - an effective tool for controlling thin film microstructure, Nucl. Instr. Meth. Phys. Res. B127/128 (1997) 796-808.
    [70] J.D. Eshelby, F.C. Frank, F.R.N. Nabarro, The equilibrium of linear arrays of dislocations, Philos. Mag., 42 (1951) 351-364.
    [71] J.-E. Sundgren, Structure and properties of TiN coatings, Thin Solid Films 128 (1985) 21-44.

    QR CODE