研究生: |
廖乙媗 Liao, I-Hsuan |
---|---|
論文名稱: |
奈米碳管複合材料與電漿改質碳纖維應用於超級電容之研究 Carbon Nanotube Composites and Plasma Modified Carbon Fiber Cloth for Supercapacitors |
指導教授: |
徐文光
Hsu, Wen-Kuang |
口試委員: |
連德軒
Lien, Der-Hsien 郭信甫 Kuo, Hsin-Fu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 奈米碳管 、電漿改質 、碳纖維布 、超級電容 |
外文關鍵詞: | Carbon Nanotubes, Plasma Modification, Carbon Fiber Cloth, Supercapacitor |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究試圖開發以碳纖維布作為電極基材的超級電容,利用兩種方式去提升電容值,分別是在碳纖維布(carbon fiber cloth,CFC)上塗佈奈米碳管(carbon nanotubes,CNTs)漿料以及施加電漿來對碳纖維布進行表面改質。
本實驗將多壁奈米碳管和聚乙烯醇(PVA)混合配置成漿料,塗佈於碳纖維布上,在氮氣保護下經過1000°C並持溫一小時的熱處理,以達到碳化效果,由循環伏安法測得其比電容為18.9 F/g,相較於同樣經過熱處理,但未塗佈漿料的純碳纖維布,其比電容值提升了超過兩倍。
此外也將碳纖維布分別施打氧氣電漿與氮氣電漿,並比較經過1、3、5分鐘處理時間的結果,以化學分析電子能譜儀(ESCA)分析鍵結的種類與比例關係,經由表面水接觸角的量測,探討碳纖維布的親水性變化,並利用電化學阻抗圖譜(EIS)分析不同試片的電阻差異。實驗發現經過一分鐘的氧氣電漿處理的CFC,擁有最高的比電容值,可以提升至30.3 F/g,此外在經過3000次循環伏安法量測後,其仍保有83 %的比電容,擁有良好的循環壽命。
最後將電極組裝成三明治結構的超級電容器,將其充電十秒後再接至LED燈上,可以成功讓它發光,表示不需要耗費很高的成本和繁複的製程,也能製作出具有一定效能的超級電容器。
This research attempts to develop a supercapacitor using carbon fiber cloth as electrodes. Two methods are used to promote specific capacitance, including coating of carbon nanotubes (CNTs) on carbon fiber cloth (CFC) and plasma modified CFC.
In this experiment, multi-walled CNTs and polyvinyl alcohol (PVA) are mixed and configured into a slurry, which is coated on a CFC and is carbonized at 1000°C in the presence of N2 for 1h. The specific capacitance measured by cyclic voltammetry is 18.9 F/g, which is more than twice as large as the pure CFC that has been heat-treated but is not coated with slurry.
In addition, oxygen and nitrogen plasma are applied to CFC, and results of different gases and treatment times are compared. Experiments show that CFC treated with oxygen plasma for one minute has specific capacitance of 30.3 F/g with 83% retention after 3000 cyclic voltammetry measurements.
[1]史丹,王蕾. (2015).能源革命及其對經濟發展的作用[J].產業經濟研究,1.
[2] Bhatt P. & Goe A. (2017). Carbon Fibres: Production, Properties and Potential Use. Mat.Sci.Res.India, 14(1).
[3] 材料世界網https://www.materialsnet.com.tw/DocView.aspx?id=11183
[4] B.A. Newcomb. (2016). Processing, structure, and properties of carbon fibers. Compos. Appl. Sci. Manuf., 91, pp. 262-282.
[5] Kai-Ping Wang and Hsisheng Teng. (2007). Structural Feature and Double-Layer Capacitive Performance of Porous Carbon Powder Derived from Polyacrylonitrile-Based Carbon Fiber. Electrochem., Soc. 154, A993.
[6] 黃正瑋(2008)。碳纖維表面成長奈米碳管及含氧官能基以促進電容表現之研究。國立成功大學化學工程學系碩士論文。
[7] C. I. Su, C. T. Chiu. (2013-12). Effect of Carbonization Temperature and Activator on Conductive Properties of Carbon Nanofiber membrane. JHGT-20.4(178).
[8] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature., 354(6348), p. 56-58.
[9] 陳亞群(2007)。多壁奈米碳管填充之導電高分子材料電磁波屏蔽效能研究。國立清華大學材料科學與工程研究所碩士論文。
[10] 張雅筑(2007)。常壓下以電暈方式製備奈米碳管或奈米結構。國立清華大學材料科學與工程研究所碩士論文。
[11] 李惠菁(2008)。多壁奈米碳管/聚乙烯醇之合成與其物理性質研究。國立清華大學材料科學與工程研究所碩士論文。
[12] Smalley, R.E., Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. (2003). Carbon nanotubes: synthesis, structure, properties, and applications. Springer Science & Business Media., Vol. 80.
[13] Odom, T.W., et al. (2000). Structure and Electronic Properties of Carbon Nanotubes. The Journal of Physical Chemistry B. 104(13): p. 2794-2809
[14] Dresselhaus, M.S., et al. (2000). Carbon Nanotubes, in The Physics of Fullerene-Based and Fullerene-Related Materials. Springer Netherlands: Dordrecht. p. 331-379.
[15] Saito, R., et al. (1992). Electronic structure of chiral graphene tubules. Applied Physics Letters. 60(18): p. 2204-2206.
[16] E. T. Thostenson, Z. Ten, T. W. Chou. (2001). Compos. Sci. Technol., 61, 1899.
[17] Saito, R., Dresselhaus, G. & Dresselhaus, M. S. (1988). Physical properties of carbon nanotubes. World scientific.
[18] Dresselhaus, M.S., Dresselhaus, G. & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: their properties and applications. Academic press.
[19] Dresselhaus, M.S. and P.C. Eklund. (2000). Phonons in carbon nanotubes. Advances in Physics. 49(6): p. 705-814.
[20] Hamada, N., S. Sawada, and A. Oshiyama. (1992). New one-dimensional conductors: Graphitic microtubules. Physical Review Letters. 68(10): p. 1579-1581.
[21] Dresselhaus, M.S., G. Dresselhaus, and A. Jorio. (2004) UNUSUAL PROPERTIES AND STRUCTURE OF CARBON NANOTUBES. Annual Review of Materials Research. 34(1): p. 247-278.
[22] Dai, H. (2002). Carbon nanotubes: opportunities and challenges. Surface Science. 500(1): p. 218-241.
[23] I. Langmuir. (1928). Proceedings of the National Academy of Sciences of the United States of America. 14.
[24] Alfred Grill. (1994). Cold plasma in materials fabrication. IEEE. New York.
[25] M. I. Boulos, P. Fauchais, and E. Pfender. Thermal plasmas : fundamentals and applications.
[26] S. Tiwari, J. Bijwe. (2014). Surface Treatment of Carbon Fibers - A Review. Procedia Technology., Volume 14, Pages 505-512.
[27] Sun M, Hu B, Wu Y, Tang Y, Huang W, Da Y. (1989). Surface of CFs continuously treated by cold plasma. Comp Sci Tech, 34: 353-64.
[28] Jang J, Yang H. (2000). The effect of surface treatment on the performance improvement of CFs/polybenzoxazine composites. J Mater Sci., 35:2297–2303.
[29] M. Winter and R. J. Brodd. (2004). "What Are Batteries, Fuel Cells, and Supercapacitors?" Chem. Rev., 104, 4245.
[30] Ander González, Eider Goikolea, Jon Andoni Barrena, Roman Mysyk. (2016). Review on supercapacitors: Technologies and materials, Renewable and Sustainable Energy Reviews., Volume 58, Pages 1189-1206.
[31]何嘉瑋(2012)。以中間相微碳球製備複合式電極應用於超級電容器之研究。國立中山大學電機工程學系碩士論文。
[32] C. H. Hamann, A. Hamnett and W. Vielstich. (1998). “Electrochemistry”, Wiley-Vch, New York.
[33] J. S. Mattson, Jr. H. B. Mark. (1998). Activated Carbon: Surface Chemistry and Adsorption from Solution. Wiley-Vch: New York.
[34] 擬電容儲電機制https://en.wikipedia.org/wiki/Pseudocapacitance
[35] Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews. (2016)., 58, 1189-1206.
[36] Lei Zhou, Chunyang Li, Xiang Liu, Yusong Zhu, Yuping Wu, Teunis van Ree. (2018). Metal Oxides in Energy Technologies. Metal Oxides., Pages 169-203.
[37] H. Shi. (1995). Electrochim. Acta., 41, 1633.
[38] IUPAC Mannal of Symbols and Terminoligy, Appendix 2, Pt. 1, Collid and Surface Chemistry, Pure Appl. Chem, 31 (1972) 578.
[39] D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, S. Shiraishi, H. Kurihara and A. Oya. (2003). Carbon. 41, 1765.
[40] J. P. Zheng. (1999). Electrochem. Solid-State Lett, 2, 359.
[41] A. J. Bard, L. R. Faulkner. (1980). Electrochemical Methods Fundamental and Application. John Wiley & Sons. Canada.
[42] Electrochemical Methods Fundamentals and Applications, JOHN WILEY & SONS, INC, SECOND EDITION. (2001).
[43] B. E. Conway. (1999). Electrochemical supercapacitors scientific fundamentals and technological applications. Kluwer Academic. New York. 105.
[44] L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen. (1996). Phys. Rev. Lett., 76, 971.
[45] A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus and M. S.
Dresselhaus. (2003). New Journal of Physics, 5 139,1 139,17.
[46] X射線光電子能譜儀https://highscope.ch.ntu.edu.tw/wordpress/?p=72999
[47] Yanjing Liu, Jiawei He, Bing Zhang, Huacheng Zhu, Yang Yang, Li Wu, Wencong Zhang, Yanping Zhou and Kama Huanga. (2021). A self-boosting microwave plasma strategy tuned by air pressure for the highly efficient and controllable surface modification of carbon, RSC Adv.,11, 9955-9963.
[48] M.A. Montes-Morán, D. Suárez, J.A. Menéndez, E. Fuente. (2004). On the nature of basic sites on carbon surfaces: an overview. Carbon, 42 (7), pp. 1219-1225.
[49] S. Kabir, K. Artyushkova, A. Serov, B. Kiefer, P. Atanassov. (2016). Surf. Interface Anal., 48, pp. 293-300.
[50] Chieh-Tsung Lo, Keng-Wei Lin, Tzu-Pei Wang, Sheng-Min Huang, Chien-Liang Lee. (2021). Differentiating between the effects of nitrogen plasma and hydrothermal treatment on electrospun carbon fibers used as supercapacitor electrodes. Electrochimica Acta, Volume 381,138255.
[51] Yuxin Li and Ashley E. Ross. (2020). Plasma-treated carbon-fiber microelectrodes for improved purine detection with fast-scan cyclic voltammetry. Analyst, 145, 805-815.
[52] A.J. Bard, L.R. Faulkner. (1996). Electrochemical Principles, Methods and Applications, Oxford University, Britain.
[53] Ya-Nan Liu, Jia-Nan Zhang, Hai-Tao Wang, Xiao-Hui Kanga and Shao-Wei Bian. (2019). Boosting the electrochemical performance of carbon cloth negative electrodes by constructing hierarchically porous nitrogen-doped carbon nanofiber layers for all-solid-state asymmetric supercapacitors, Mater. Chem. Front.3, 25-31.
[54] M. A. Montes-Moran, D. Suarez, J. A. Menendez, E. Fuente. (2004). Carbon 42, 1219.