研究生: |
張毓融 Yu-Jung Chang |
---|---|
論文名稱: |
用於超寬頻多路徑通道中具有路徑安排策略之基於最大訊號雜訊比例之空時選擇性犁耙接收機 Space-time MSINR-SRAKE Receiver with Finger Assignment Strategies in UWB Multipath Channels |
指導教授: |
祁忠勇
Chong-Yung Chi |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 犁耙接收機 、選擇性犁耙接收機 、空時犁耙接收機 、路徑安排策略 、訊號雜訊比例 、超寬頻 、窄頻干擾 、空時選擇性犁耙接收機 |
外文關鍵詞: | RAKE receiver, selective RAKE receiver (SRAKE), space-time RAKE receiver, finger assignment strategy (FAS), signal to interference-plus-noise ratio (MSINR), ultra-wideband (UWB), narrowband interference (NBI), space-time SRAKE receiver |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文於受有窄頻干擾(Narrowband Interference)與多重接取干擾(Multiple Access Interference)下的超寬頻(Ultra-Wideband)無線通訊系統中,提出一個以串接(Cascade)結構或以聯合(Joint)結構之基於最大訊號雜訊比例(Maximum Signal to Interference-plus-noise Ratio)之空時選擇性犁耙接收機(Space-time Selective RAKE Receiver)。為能在低複雜度下有效地抽取有興趣的訊號,我們連同所提出的空時選擇性犁耙接收機,另外提出兩個路徑安排策略(Finger Assignment Strategies, FASs),其分別為基於能量之路徑安排策略(Energy-based FAS)與有限制的基於能量之路徑安排策略(Constrained Energy-based FAS)。藉由電腦模擬結果,我們顯示所提出的基於最大訊號雜訊比例之空時選擇性犁耙接收機相較於現存的時間選擇性犁耙接收機(Time-only Selective RAKE Receivers)以及基於最大比例結合(Maximum Ratio Combining)之空時選擇性犁耙接收機,在皆使用基於能量之路徑安排策略下,更能夠提供較大的系統容量(System Capacity)並且有較佳的抵抗窄頻干擾能力。另一方面,透過分析與模擬結果,我們證明所提出的空時選擇性犁耙接收機在使用基於能量之路徑安排策略時,其性能表現易受窄頻干擾之影響,且若有較強的窄頻干擾出現於接收端時,其性能表現將顯著地降低。相反地,使用有限制的基於能量之路徑安排策略的空時選擇性犁耙接收機,其對於窄頻干擾仍有非常穩健的性能表現,而且當窄頻干擾為系統的主要干擾來源時,我們所提出的接收機在使用有限制的基於能量之路徑安排策略下的性能將遠優於使用基於能量之路徑安排策略下的性能。
This thesis proposes a space-time selective RAKE (SRAKE) receiver (in cascade form and in joint form) by maximizing signal to interference-plus-noise ratio (MSINR) for ultra-wideband (UWB) wireless communications in the presence of narrowband interference (NBI) and multiple access interference. For effectively extracting the UWB signal of interest with low complexity, two finger assignment strategies (FASs), the energy-based FAS (EB-FAS) and the constrained energy-based FAS (CEB-FAS), are also proposed together with the proposed space-time MSINR-SRAKE receiver. By some simulation results, we show that the proposed space-time MSINR-SRAKE receiver can provide larger system capacity and better immunity to the strong NBI than the existing time-only SRAKE receivers and space-time SRAKE receivers with maximum ratio combining (MRC) when the EB-FAS is used. On the other hand, through analyses and simulation, we demonstrate that the space-time MSINR-SRAKE receiver using the EB-FAS is susceptible to the impact of NBI, and the receiver performance is severely degraded when a strong NBI is present. On the contrary, the space-time MSINR-SRAKE receiver using the proposed novel CEB-FAS outperforms that using the EB-FAS when NBI is the dominant interference, and is much robust against NBI.
[1] Liuqing Yang and G. B. Giannakis, "Ultra-wideband communications: an idea whose time has come," IEEE Signal Processing Magazine, vol. 21, pp. 26-54, Nov. 2004.
[2] Xiaoli Chu and R. D. Murch, "The effect of NBI on UWB time-hopping systems," IEEE Trans. Wireless Commun., vol. 3, pp. 1431-1436, Sept. 2004.
[3] S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, "Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity," Proc. IEEE, vol. 92, pp. 295-311, Feb. 2004.
[4] Federal Communications Commission, "First report and order in the matter of revision of part 15 of the commission's rules regarding ultrawideband transmission systems," ET-Docket 98-153, FCC 02-48, Apr. 22, 2002.
[5] IEEE P802.15 Working Group for WPANs, "DS-UWB physical layer submission to 802.15 task group 3a," IEEE P802.15-04/0137r3, July 2004.
[6] J. R. Foerster, "The performance of a direct-sequence spread ultrawideband system in the presence of multipath, narrowband interference, and multiuser interference," Proc. IEEE Conf. on Ultra Wideband Systems and Technologies, Baltimore, MD, May 21-23, 2002, pp. 87-91.
[7] Qinghua Li and L. A. Rusch, "Multiuser receivers for DS-CDMA UWB," Proc. IEEE Conf. on Ultra Wideband Systems and Technologies, Baltimore, MD, May 21-23, 2002, pp. 163-167.
[8] Qinghua Li and L. A. Rusch, "Multiuser detection for DS-CDMA UWB in the home environment," IEEE J. Select. Areas in Commun., vol. 20, pp. 1701-1711, Dec. 2002.
[9] J. G. Proakis, Digital Communications. 4th Edition, New York: McGraw-Hill, 2001.
[10] M. Z. Win, G. Chrisikos and N. R. Sollenberger,
"Performance of RAKE reception in dense multipath channels: implications of spreading bandwidth and selection diversity order," IEEE J. Select. Areas in Commun., vol. 18, pp. 1516-1525, Aug. 2000.
[11] D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molisch, "Performance of low complexity RAKE reception in a realistic UWB channel," Proc. IEEE International Conf. on Commun., vol. 2, New York, USA, Apr. 28-May 2, 2002, pp. 763-767.
[12] N. Boubaker and K. B. Letaief, "A low complexity MMSE-RAKE receiver in a realistic UWB channel and in the presence of NBI," Proc. IEEE Wireless Commun. and Networking Conf., vol. 1, New Orleans, LA, Mar. 16-20, 2003, pp. 233-237.
[13] M. Z. Win and R. A. Scholtz, "On the energy capture of ultrawide bandwidth signals in dense multipath environments," IEEE Commun. Lett., vol. 2, pp. 245-247, Sept. 1998.
[14] M. Abou-Khousa, M. El-Tarhuni and A. Ghrayeb, "A novel finger assignment algorithm for RAKE receivers in CDMA systems," Proc. IEEE International Conf. on Commun., vol. 5, Paris, France, June 20-24, 2004, pp. 2516-2520.
[15] A. G. Klein, D. R. Brown III, D. L. Goeckel, and C. R. Johnson, Jr., "Rake reception for UWB communication systems with intersymbol interference," Proc. IEEE Workshop on Signal Processing Advances in Wireless Commun., Rome, Italy, June 15-18, 2003, pp. 244-248.
[16] T. Ikegami and K. Ohno, "Interference mitigation study for UWB impulse radio," Proc. IEEE Personal, Indoor and Mobile Radio Commun., vol. 1, Beijing, China, Sept. 7-10, 2003, pp. 583-587.
[17] K. Ohno, T. Ikebe and T. Ikegami, "A proposal for an interference mitigation technique facilitating the coexistence of biphase UWB and other wideband systems," Proc. IEEE Conf. on Joint Ultra Wideband Systems and Ultrawideband Systems and Technologies, Kyoto, Japan, May
19-21, 2004, pp. 50-54.
[18] S. S. Tan, B. Kannan and A. Nallanathan, "Performance of UWB multiple access impulse radio systems in multipath environment with antenna array," Proc. IEEE Global Telecommunications Conf., vol. 4, San Francisco, CA, Dec. 1-5, 2003, pp. 2182-2186.
[19] S. S. Tan, B. Kannan and A. Nallanathan, "Ultra-Wideband impulse radio systems with temporal and spatial diversities," Proc. IEEE Vehicular Technology Conf., vol. 1, Orlando, Florida, Oct. 6-9, 2003, pp. 607-611.
[20] S. S. Tan, B. Kannan and A. Nallanathan, "Performance of ultra-wideband time-hopping spread spectrum impulse radio systems with antenna array," Proc. IEEE International Conf. on Commun. Systems, vol. 1, Singapore, Nov. 25-28, 2002, pp. 399-403.
[21] A. Shah and A. M. Haimovich, "Performance of space time receiver architectures for CDMA overlay of narrowband waveforms for personal communication systems," Proc. IEEE International Conf. on Commun., vol. 1, Montreal, Canada, June 8-12, 1997, pp. 314-318.
[22] A. Shah and A. M. Haimovich, "On spatial and temporal processing for CDMA overlay situations," Proc. IEEE Workshop on Signal Processing Advances in Wireless Commun., Paris, France, Apr. 16-18, 1997, pp. 365-368.
[23] W. Y. Xao, C. Bernstein and A. M. Haimovich, "Near-far resistant of space-time processing for wireless CDMA communications," IEEE Commun. Lett., vol. 1, pp. 105-107, July 1997.
[24] A. M. Haimovich and A. Shah "The performance of space time processing for suppressing narrowband interference in CDMA communications," Wireless Personal Commun., Kluwer Academic Publisher, pp. 233-255, 1998.
[25] IEEE P802.15Working Group for WPANs, "Channel modeling sub-committe report final," IEEE P802.15-02/368r5-SG3a, Dec. 2002.