簡易檢索 / 詳目顯示

研究生: 曾鈺傑
Tseng, Yu-chieh
論文名稱: 沉浸邊界法之數值研究
Numerical study of immersed boundary method
指導教授: 賴明治
Lai, Ming-chih
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 35
中文關鍵詞: delta function二階精確投影法人造流速
外文關鍵詞: Dirac delta function, Second-order projection method, Artificial velocity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流體和Lagrangian介面的變數的混合物,被寫成一個常用的immersed boundary公式化。然而,兩個集合變數之間的連結是由某些假設架構出來的Dirac delta function。接下來,我們也會比較一個新型態的delta function和原本型態的差異。我們使用的數值方法是一個半隱性二階的投影方法去處理有黏滯性不可壓縮的數學方程式,然後藉由流體的速度內插得到介面的速度去移動介面。在數值結果方面,我們首先證實沉浸邊界法的幾個論據,然後假設一個水泡侵入在一個不可壓縮的流體,隨著不同的Capillary number,我們觀察一個水泡在二向流的形變。另外,我們利用等價分佈的技術去控制Lagrangian markers均勻分佈。正如所料,隨著markers的控制,那數值的實驗在面積維持方面比原本沒均勻分布的markers有較好的成果。


    In this thesis, we introduce the fundamental concepts of the immersed boundary method and also apply it to the simulation of two-dimensional interfacial flows. The governing equations are written in a usual immersed boundary formulation where a mixture of Eulerian flow and
    Lagrangian interfacial variables are used, and the linkage between these two set of variables is provided by the Dirac delta function which is constructed under certain postulates. A new type of smooth delta functions is compared with the original ones. The incompressible
    viscous Navier-Stokes equations are solved by a
    semi-implicit second-order projection method, and the interface moves by the velocity which is interpolated from the fluid velocity. In numerical results, we first verify several facts of the immersed boundary method and then consider a bubble immersed in an two-dimensional
    incompressible fluid. We observe the deformation of a bubble with different Capillary number in a shear flow. Moreover, we take the advantage of an equi-distributed technique to control the distribution of the Lagrangian markers uniformly. As expected, the numerical experiments
    with marker control technique have better performance in the area preservation than the case without it.

    Contents Abstract i Contents ii List of tables iv List of ‾gures v 1 Introduction 1 2 Immersed boundary method 2 2.1 Two-phase flows 3 2.2 Equation of motion 4 2.2.1 Derivation of interfacial forces 4 2.2.2 Connection between fluid and interface 6 2.2.3 Dimensionless variables 6 2.2.4 Dimensionless equations of motion 7 2.2.5 Construction of delta function 8 2.2.6 The smoothing technique for discrete delta function 13 2.3 Controlling the Lagrangian marker uniformly 15 3 Numerical method 17 3.1 Fluid solver 17 3.2 MAC formulation 18 3.3 Projection method 20 3.3.1 Second-order projection method 20 3.4 Lagrangian manners 21 3.5 Numerical time integration 22 4 Numerical results 25 4.1 Convergence test of delta function 25 4.2 Convergence test of fluid velocity 27 4.3 Qualitative test 28 4.4 Deformation of a bubble for different Capillary number in a shear flow 29 4.5 Effect of the artificial velocity in the interface 30 4.5.1 The effect of equi-distribution for Lagrangian markers in a shear flow 31 4.5.2 Equi-distribution v.s. non-uniform distribution in the area errors 32 5 Conclusion 33 References 34

    [1] J. Adams, P. Swarztrauber, R. Sweet, Fishpack V a package of Fortran subprograms for the solution of separable elliptic partial differential equations, 1980. <http://www.netlib.org/fishpack>.
    [2] F. H. Harlow, J. E. Welsh, Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids, 8, (1965), 2181-2189.
    [3] A. J. James, J. S. Lowengrub, A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant, J. Comput. Phys., 201 (2004) 685-722.
    [4] Ming-Chih Lai, Yu-Hau Tseng, and Huaxiong Huang, An immersed boundary method for interfacial flows with insoluble surfactant. Journal of Computational Physics, Vol. 227, (2008), pp. 7279-7293.
    [5] M.-C. Lai, Y.-H. Tseng and H. Huang, Numerical simulations of moving contact lines with surfactant, submitted for publication.
    [6] C. S. Peskin, Flow patterns around heart valves: a numerical method, J. Comput. Phys. 10, (1972), 252-271.
    [7] C. S. Peskin, The fluid dynamics of heart valves: Experimental, theoritiacal and computational methods. Annual Review of Fluid Mechanics., 14, (1982), 235.
    [8] C. S. Peskin, The immersed boundary method, Acta Numerica, 1-39, (2002).
    [9] Charles S. Peskin and Beth Feller Printz, Improved volume conservation in the computation of flows with immersed elastic boundaries. Journal of Computational Physics., Vol. 105, (1993), pp. 33-46.
    [10] C. S. Peskin, B. F. Printz, Improved volume conservation in the computation of flows with immersed elastic boundaries, J. Comput. Phys. 105, (1993), 33-36.
    [11] J. E. Pilliod Jr., E. G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys. 199, (2004), 456-502.
    [12] A. M. Roma, C. S. Peskin, M. J. Berger (1999), An adaptive version of the immersed boundary method. J. Comput. Phys. 153 (1999) 509-534.
    [13] M. Sussman, P. Smereka, S. Osher (1994), A level set approach for computing soluitons to incompressible two-phase flow, J. Comput. Phys.114 (1994) 146-159.
    [14] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W.Tauber, J. Han, S. Nas, Y.-J. Jan, A front -tracking method for the computations of multiphase flow, J. Comput. Phys., 169, (2001), 708-759.
    [15] S. O. Unverdi, G. Tryggvason, A front-tracking method for viscous incompressible multi-fluid flows, J. Comput. Phys., 100, (1992), 25-37.
    [16] J.-J. Xu, Z. Li, J. S. Lowengrub, H.-K. Zhao, A level-set method for interfacial flows with surfactant, J. Comput. Phys., 212, (2006), 590-616.
    [17] Xiaolei Yang, Xing Zhang, Zhilin Li, Guo-Wei He, A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations, J. Comput. Phys., 228, (2009), 7821-7836.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE