研究生: |
曾鈺傑 Tseng, Yu-chieh |
---|---|
論文名稱: |
沉浸邊界法之數值研究 Numerical study of immersed boundary method |
指導教授: |
賴明治
Lai, Ming-chih |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 35 |
中文關鍵詞: | delta function 、二階精確投影法 、人造流速 |
外文關鍵詞: | Dirac delta function, Second-order projection method, Artificial velocity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流體和Lagrangian介面的變數的混合物,被寫成一個常用的immersed boundary公式化。然而,兩個集合變數之間的連結是由某些假設架構出來的Dirac delta function。接下來,我們也會比較一個新型態的delta function和原本型態的差異。我們使用的數值方法是一個半隱性二階的投影方法去處理有黏滯性不可壓縮的數學方程式,然後藉由流體的速度內插得到介面的速度去移動介面。在數值結果方面,我們首先證實沉浸邊界法的幾個論據,然後假設一個水泡侵入在一個不可壓縮的流體,隨著不同的Capillary number,我們觀察一個水泡在二向流的形變。另外,我們利用等價分佈的技術去控制Lagrangian markers均勻分佈。正如所料,隨著markers的控制,那數值的實驗在面積維持方面比原本沒均勻分布的markers有較好的成果。
In this thesis, we introduce the fundamental concepts of the immersed boundary method and also apply it to the simulation of two-dimensional interfacial flows. The governing equations are written in a usual immersed boundary formulation where a mixture of Eulerian flow and
Lagrangian interfacial variables are used, and the linkage between these two set of variables is provided by the Dirac delta function which is constructed under certain postulates. A new type of smooth delta functions is compared with the original ones. The incompressible
viscous Navier-Stokes equations are solved by a
semi-implicit second-order projection method, and the interface moves by the velocity which is interpolated from the fluid velocity. In numerical results, we first verify several facts of the immersed boundary method and then consider a bubble immersed in an two-dimensional
incompressible fluid. We observe the deformation of a bubble with different Capillary number in a shear flow. Moreover, we take the advantage of an equi-distributed technique to control the distribution of the Lagrangian markers uniformly. As expected, the numerical experiments
with marker control technique have better performance in the area preservation than the case without it.
[1] J. Adams, P. Swarztrauber, R. Sweet, Fishpack V a package of Fortran subprograms for the solution of separable elliptic partial differential equations, 1980. <http://www.netlib.org/fishpack>.
[2] F. H. Harlow, J. E. Welsh, Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids, 8, (1965), 2181-2189.
[3] A. J. James, J. S. Lowengrub, A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant, J. Comput. Phys., 201 (2004) 685-722.
[4] Ming-Chih Lai, Yu-Hau Tseng, and Huaxiong Huang, An immersed boundary method for interfacial flows with insoluble surfactant. Journal of Computational Physics, Vol. 227, (2008), pp. 7279-7293.
[5] M.-C. Lai, Y.-H. Tseng and H. Huang, Numerical simulations of moving contact lines with surfactant, submitted for publication.
[6] C. S. Peskin, Flow patterns around heart valves: a numerical method, J. Comput. Phys. 10, (1972), 252-271.
[7] C. S. Peskin, The fluid dynamics of heart valves: Experimental, theoritiacal and computational methods. Annual Review of Fluid Mechanics., 14, (1982), 235.
[8] C. S. Peskin, The immersed boundary method, Acta Numerica, 1-39, (2002).
[9] Charles S. Peskin and Beth Feller Printz, Improved volume conservation in the computation of flows with immersed elastic boundaries. Journal of Computational Physics., Vol. 105, (1993), pp. 33-46.
[10] C. S. Peskin, B. F. Printz, Improved volume conservation in the computation of flows with immersed elastic boundaries, J. Comput. Phys. 105, (1993), 33-36.
[11] J. E. Pilliod Jr., E. G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys. 199, (2004), 456-502.
[12] A. M. Roma, C. S. Peskin, M. J. Berger (1999), An adaptive version of the immersed boundary method. J. Comput. Phys. 153 (1999) 509-534.
[13] M. Sussman, P. Smereka, S. Osher (1994), A level set approach for computing soluitons to incompressible two-phase flow, J. Comput. Phys.114 (1994) 146-159.
[14] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W.Tauber, J. Han, S. Nas, Y.-J. Jan, A front -tracking method for the computations of multiphase flow, J. Comput. Phys., 169, (2001), 708-759.
[15] S. O. Unverdi, G. Tryggvason, A front-tracking method for viscous incompressible multi-fluid flows, J. Comput. Phys., 100, (1992), 25-37.
[16] J.-J. Xu, Z. Li, J. S. Lowengrub, H.-K. Zhao, A level-set method for interfacial flows with surfactant, J. Comput. Phys., 212, (2006), 590-616.
[17] Xiaolei Yang, Xing Zhang, Zhilin Li, Guo-Wei He, A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations, J. Comput. Phys., 228, (2009), 7821-7836.