研究生: |
朱引帆 Yin-Fan Ju |
---|---|
論文名稱: |
動作平衡濾波器 Motion Balance Filter |
指導教授: |
楊熙年
Shi-Nine Yang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 電腦動畫 、動畫編輯 、平衡 |
相關次數: | 點閱:47 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提供了一個基於平衡的動作編輯方法。當給定了一段經過動作編輯後可能不平衡的人體動畫,這套方法會將不平衡的動畫轉變為平衡的動畫並盡可能保留原本動作的特性。我們分析並控制零力矩點(Zero moment point, ZMP)的軌跡以達到動態平衡。當零力矩點的軌跡跑出使用者定義的支撐區域(Supporting area)時,我們需要調整人體的關節來校正零力矩點的軌跡。本方法將平衡動作編輯看成一個受限制的狀態計算問題(Constrained state estimation problem),我們使用非察覺型卡爾曼濾波器(Unscented Kalman Filter)去解決這個問題。在穩定的執行速度下,動畫師可以調整濾波器中的參數去微調最後產生的動畫。
This article presents a balance-based motion editing technique. Given an edited unbalanced human animation, the method converts it to a balanced one while preserving the original motion characteristics as much as possible. We achieve dynamic balance by analyzing and controlling the trajectory of the zero moment point(ZMP). If the ZMP trajectory is lying out of the user-defined supporting area, we need to adjust human joints to correct the ZMP trajectory. This technique converts the balance editing problem to a constrained state estimation problem, based on the per-frame Unscented Kalman filter framework. Animators can tune several filter parameters to adjust the final animations at a stable interactive rate.
[1] Cary B. Phillips and Norman I. Badler. Interactive behaviors for bipedal articulated figures. In Computer Graphics (SIGGRAPH ’91 Proceedings), pages 359–362, July 1991.
[2] WOOTEN W. L.: Simulation of Leaping, Tumbling, Landing, and Balancing Humans. Ph.D. dissertation., Georgia Institute of Technology, 1998.
[3] NEFF M., FIUME E.: Methods for exploring expressive stance. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Aug. 2004), pp. 49–58.
[4] NEFF M., FIUME E.: Methods for exploring expressive stance. Graphical Models (2005). to appear.
[5] Ching-Long Shih. Analysis of the dynamics of a biped robot with seven degrees of freedom. In Robotics and Automation ’96 Proceedings, volume 4, pages 3088–3013, 1996.
[6] T. Fukuda, Y. Komata, and T. Arakawa. Stabilization control of biped locomotion robot based learning with gas having self-adaptive mutation and recurrent neural networks. In Robotics and Automation ’97 Proceedings, volume 1, pages 217–222, 1997.
[7] Jong H. Park and Yong K. Rhee. Zmp trajectory generation for reduced trunk motions of biped robots. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’98), pages 90– 95. IEEE/RSJ IROS, October 1998.
[8] A. Dasgupta and Y. Nakamura. Making feasible walking motion of humanoid robots from human motion capture data. In Robotics and Automation ’99 Proceedings, volume 2, pages 1044–1049, 1999.
[9] Philippe Sardain and Guy Bessonnet. Forces Acting on a Biped Robot. Center of Pressure—Zero Moment Point. In IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 34, NO. 5, SEPTEMBER 2004.
[10] Hyeongseok Ko. Kinematic and Dynamic Techniques for Analyzing, Predicting, and Animating Human Locomotion. PhD thesis, University of Pennsylvania, Department of Computer and Information Science, Philadelphia, PA 19104-6389, May 1994. MS-CIS-94-31.
[11] Hyeongseok Ko and Norman I. Badler. Animating human locomotion in real-time using inverse dynamics, balance and comfort control. IEEE Computer Graphics and Applications, 16(2):50–59, March 1996.
[12] LEE, J. AND SHIN, S. Y. 1999. A hierarchical approach to interactive motion editing for human-like figures. In Proceedings of ACM SIGGRAPH 99. Computer Graphics Proceedings. ACM Press. 39–48.
[13] MAYBECK, P. S. 1979. Stochastic Models, Estimation, and Control. Vol. 1. Academic Press, Inc.
[14] GEETER, J. D., BRUSSEL, H. V., AND SCHUTTER, J. D. 1997. A smoothly constrained kalman filter. IEEE Trans. Pattern Anal. Mach. Intell., 1171–1177.
[15] SIMON, D. AND CHIA, T. 2002. Kalman filtering with state equality constraints. IEEE Trans. Aeros. Electr. Syst. 39, 128–136.
[16] JULIER, S. J. AND UHLMANN, J. K. 1997. A new extension of the kalman filter to nonlinear systems. In Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls.
[17] WAN, E. A. AND VAN DER MERWE, R. 2000. The unscented kalman filter for nonlinear estimation. In Proceedings of Symposium 2000 on Adaptive Systems for Signal Processing, Communication and Control.
[18] SEYOON TAK AND HYEONG-SEOK KO. 2005. A physically-based motion retargeting filter. In ACM Transactions on Graphics, Vol. 24, No. 1, January 2005, Pages 98-117.
[19] WELCH, G. AND BISHOP, G. 2001. An introduction to the kalman filter. ACM SIGGRAPH 2001 Course Notes.
[20] Kalman, R. E. 1960. “A New Approach to Linear Filtering and Prediction Problems,” Transaction of the ASME—Journal of Basic Engineering, pp. 35-45 (March 1960).
[21] Maybeck, Peter S. 1979. Stochastic Models, Estimation, and Control, Volume 1, Academic Press, Inc.
[22] Brown, R. G. and P. Y. C. Hwang. 1992. Introduction to Random Signals and Applied Kalman Filtering, Second Edition, John Wiley & Sons, Inc.
[23] Julier, Simon and Jeffrey Uhlman. "A General Method of Approximating Nonlinear Transformations of Probability Distributions," Robotics Research Group, Department of Engineering Science, University of Oxford [cited 14 November 1995].
[24] Eric A. Wan and Rudolph van der Merwe. "The Unscented Kalman Filter for Nonlinear Estimation". http://cslu.cse.ogi.edu/nsel/ukf/.
[25] MATLAB Online Reference Documentation。http://www.math.ufl.edu/help/matlab/polyfit.html