簡易檢索 / 詳目顯示

研究生: 何志浩
jr-Hau He
論文名稱: 半導體化合物奈米線之合成、結構鑑定和物理性質研究
Synthesis, Structural Characterization, and Physical Properties of Semiconducting Compound Nanowires
指導教授: 陳力俊
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 170
中文關鍵詞: 氧化錫氮化鋁氧化鋅奈米線奈米柱
外文關鍵詞: ZnO, SnO2, AlN, nanowire, nanorod
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文以設計前瞻的奈米材料系統,利用其奈米的尺度與形狀,來探索其新穎材料特性與現象。此外,成長特殊奈米結構、摻雜技術、與奈米材料的控制成長技術亦是本文討論重點之一。

    本論文涵蓋下列幾項奈米材料的合成、材料分析、場發射與放光特性研究:(1)矽鍺氧化物奈米線、(2)氧化錫奈米線、(3)氧化鋅奈米線、(4)氮化鋁奈米線。企圖發現其中的科學上的內涵並探索其中可能的工程應用。


    The advance in modern material technology relies on the manipulation, functionalities, and controlled growth of atoms at surfaces. Understanding physical and chemical evolutions involved in the nanomaterial surfaces and interfaces is a key to the development of nanotechnology.

    The central theme of this dissertation is the design and systematic exploration of advanced materials properties/phenomena as a function of size and dimensionality. New materials structures, the correlation of physical behaviors with the nanostructures (as a function of processing), doping, the nanomanipulation, controlled growth of nanomaterials and their applications in emerging nanotechnologies are emphasized.

    In general, this thesis covers the synthesis and characterization of the following nanomaterials: (1) SiGe oxide nanowires, (2) SnO2 nanowires, (3) ZnO nanowires, and (4) AlN nanowires. Efforts have been made to understand the underlying science and to exploit their possible engineering applications.

    Contents Contents………………………………………………………………….I Acknowledgments……………………………………………………...VI List of Acronyms and Abbreviations…………………………….……IX Abstract………………………………………………………………....XI Chapter 1: Introduction to Nanotechnology 1.1 Nanotechnology…………………………………………………1 1.2 Self-Assembly……………………….………………………….3 1.3 Semiconducting Nanowires……………………………………..4 1.3.1 Si Oxide and SiGe Oxide Nanowires……………………...6 1.3.2 Tin Oxide Nanowires……………………………………...7 1.3.3 Zinc Oxide Nanowires…………………………………….8 1.3.4 Aluminum Nitride Nanowires……………………………..9 1.4 Growth of Nanowires…………………………………………...9 1.4.1 Synthesis Methods of Nanowires…………………………..9 1.4.1.1 Vapor-Solid Growth Mechanism…………………………9 1.4.1.2 Vapor-Liquid-Solid Growth Mechanism………………..10 1.4.1.3 Solution-Liquid-Solid Growth Mechanism……………..11 1.4.1.4 Oxide- Assisted Growth Mechanism……………………13 1.4.2 Controlled Growth of Nanowires…………………………14 1.5 Scope and Aim of the Thesis…………………………………..14 Chapter 2: Experimental Procedures 2.1 Deposition of Catalyst…………………………………………16 2.1.1 E-beam Deposition………………………………………16 2.1.2 Formation of Hexagonal Au Particle Networks…………16 2.2 Preparation of Samples for Transmission Electron Microscope Examination……………………………………………………18 2.2.1 Preparation of Planview Samples………………………..18 2.2.2 Cross-Sectional Specimen Preparation……….………….19 2.3 Transmission Electron Microscope Observation………………20 2.4 Scanning Electron Microscope Observation…………………..21 2.5 Energy Dispersive Spectrometer Analysis…………………….21 2.6 Electron Energy Loss Spectrometer Analysis…………………22 2.7 X-Ray Diffractometry…………………………………………22 2.8 Field Emission Measurement………………………………….22 2.9 Cathodoluminescence Analysis………………………………..23 Chapter 3: Synthesis of Blue-Light-Emitting Si1-xGex Oxide Nanowires 3.1 Introduction................................................................................25 3.2 Experimental Procedures………………………………………26 3.3 Results and Discussion………………………………………...27 3.4 Summary and Conclusions…………………………………….32 Chapter 4: Synthesis of Si-Ge Oxide Nanowires on Self-Assembled Gold Catalyst 4.1 Introduction……………………………………………………33 4.2 Experimental Procedures………………………………………34 4.3 Results and Discussion………………………………………...35 4.4 Summary and Conclusions…………………………………….38 Chapter 5: SnO2 Nanorods with Beak-Like Growth Front: Synthesis, Structure and Field-Emission Properties 5.1 Introduction……………………………………………………40 5.2 Experimental Procedures………………………………………41 5.3 Results and Discussion………………………………………...43 5.4 Summary and Conclusions…………………………………….48 Chapter 6: Polar Substrate Surface Induced Growth of Crossed ZnO Nanorod Networks 6.1 Introduction…………………………………………………….50 6.2 Experimental Procedures……………………………………….51 6.3 Results and Discussion…………………………………………52 6.4 Summary and Conclusions……………………………………..55 Chapter 7: Large-Scale Ni-doped ZnO Nanowire Arrays and Electrical and Optical Properties 7.1 Introduction…………………………………………………….56 7.2 Experimental Procedures……………………………………….57 7.3 Results and Discussion…………………………………………58 7.4 Summary and Conclusions……………………………………..60 Chapter 8: Pattern and Feature Designed Growth of ZnO Nanowire Arrays for Vertical Devices 8.1 Introduction…………………………………………………….61 8.2 Experimental Procedures……………………………………….62 8.3 Results and Discussion…………………………………………64 8.4 Summary and Conclusions……..………………………………67 Chapter 9: Aligned AlN Nanorods with Multi-Tipped Surfaces – Growth, Field Emission, and Cathodoluminescence Properties 9.1 Introduction…………………………………………………….69 9.2 Experimental Procedures……………………………………….70 9.3 Results and Discussion…………………………………………71 9.4 Summary and Conclusions……………………………………..76 Chapter 10: Summary and Conclusions 10.1 Synthesis of Blue-Light-Emitting Si1-xGex Oxide Nanowires..78 10.2 Synthesis of Si-Ge Oxide Nanowires on Self-Assembled Gold Catalyst. ……………………………………………………...78 10.3 SnO2 Nanorods with Beak-Like Growth Front: Synthesis, Structure and Field-Emission Properties……………………..79 10.4 Polar Substrate Surface Induced Growth of Crossed ZnO Nanorod Networks…………………………………………...80 10.5 Large-scale Ni-doped ZnO Nanowire Arrays and Electrical and Optical Properties…………………………………………….80 10.6 Pattern and Feature Designed Growth of ZnO Nanowire Arrays for Vertical Devices…………………………………………..81 10.7 Aligned AlN Nanorods with Multi-Tipped Surfaces – Growth, Field Emission, and Cathodoluminescence Propertie………..81 Chapter 11: Future Prospects 11.1 Pattern and Feature Designed Growth of Nanowire Arrays for Application in Nano-Scale Devices………………………….83 11.1.1 Growth of Nanowire Arrays on Individual Au Dot in Self-Assembled Hexagonal Au Dot Networks……………….83 11.1.2 Growth of Nanowire Arrays on the Catalyst Patterned by Nanosphere Lithography Process…………………………….84 11.1.3 Growth of Nanowire Arrays on the Catalyst Patterned by AFM nanomachining…………………………………………85 11.2 Growth of Modulation-Doped n- and p-type Nanowrie Arrays………………………………………………………...85 11.3 Growth of Modulation-Doped Nanowrie Arrays for Spintronics……………………………………………………86 References………………………………………………………………87 Figure Captions……………………………………………………….123 Figures………………………………………………………………...132 Publication List……………………………………………………….164 Curriculum Vitae………………………………………………..……170

    Chapter 1
    1. A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, 933-937 (1996).
    2. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci. 30, 545-610 (2000).
    3. J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. deJongh, “The Signature of Conductance Quantization in Metallic Point Contacts,” Nature 375, 767-769 (1995).
    4. K. K. Likharev and T. Claeson, “Single Electronics,” Sci. Am. 266, 80-85 (1992).
    5. G. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, “Architectonic Quantum Dot Solids,” Acc. Chem. Res. 32, 415-423 (1999).
    6. M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, “Resonant Tunneling of Electrons via 20 nm Scale InAs Quantum Dot and Magnetotunneling Spectroscopy of Its Electronic States,” Appl. Phys. Lett. 70, 105-107 (1996).
    7. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device,” Science 286, 1550-1552 (1999).
    8. C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, “Electronic Transport in Y-Junction Carbon Nanotubes,” Phys. Rev. Lett. 85, 3476-3479 (2000).
    9. M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “Nanowire Resonant Tunneling Diodes,” Appl. Phys. Lett. 81, 4458-4460 (2002).
    10. J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on Silicon Nanoelectronics for Terascale Integration,” Science 293, 2044-2049 (2001).
    11. C. M. Lieber, “The Incredible Shrinking Circuit,“ Sci. Am. 285, 58-65 (2001).
    12. V. Balzani, A. Credi, and M. Venturi, “The Bottom-Up Approach to Molecular-Level Devices and Machines,” Chem. Eur. J. 8, 5524-5532 (2002).
    13. K. E. Drexler, “Engines of Creation, The Coming Era of Nanotechnology,” Anchor Press, New York, (1986).
    14. K. E. Drexler, “Machine-Phase Nanotechnology,” Sci. Am. 285, 74-75 (2001).
    15. G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295, 2418-2421 (2002).
    16. C. Joachim, J. K. Gimzewski, and A. Aviram, “Electronics Using Hybrid-Molecular and Mono-Molecular Devices,” Nature 408, 541-548 (2000).
    17. C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart and J. R. Heath, “A [2]Catenane-Based Solid State Electronically Reconfigurable Switch,” Science 289, 1172-1175 (2000).
    18. M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, and J. M. Tour, “Molecular Random Access Memory Cell,” Appl. Phys. Lett. 78, 3735-3737 (2001).
    19. D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A Single-Electron Transistor Made from a Cadmium Selenide Nanocrystal,” Nature 389, 699-701 (1997).
    20. M. H. Devoret and R. J. Schoelkopf, “Amplifying Quantum Signals with the Single-Electron Transistor,” Nature 406, 1039-1047 (2000).
    21. S. Iijima, “Helical Microtube of Graphitic Carbon,” Nature 354, 56-58 (1991).
    22. C. Dekker, “Carbon Nanotubes as Molecular Quantum Wires,” Phys. Today 52, May, 22 (1999).
    23. Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon,” Science 281, 973-975 (1998).
    24. Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, “Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods,” Science 285, 1719-1722 (1999).
    25. J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32, 435-445 (1999).
    26. Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled using Silicon Nanowire Building Blocks,” Science 291, 851-853 (2001).
    27. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks,” Science 294, 1313-1317 (2001).
    28. W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction,” Science 277, 1287-1289 (1997).
    29. J. Hu, L. Li, W. Yang, L. Manna, L. Wang, and A. P. Alivisatos, “Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods,” Science 292, 2060-2063 (2001).
    30. W. I. Park, G. C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15, 526-529 (2003).
    31. P. G. Collins and P. Avouris, “Nanotubes for Electronics,” Sci. Am. 283, 62-69 (2000).
    32. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics,” Nature 415, 617-620 (2002).
    33. Y. Cui, X. Duan, J. Wang, and C. M. Lieber, “Doping and Electrical Transport in Silicon Nanowires,” J. Phys. Chem. B 104, 5213-5216 (2000).
    34. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature 409, 66-69 (2001).
    35. M. S. Gudiksen, J. Wang, and C. M. Lieber, “Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires,” J. Phys. Chem. B 105, 4062-4064 (2001).
    36. X. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 12, 298-302 (2001).
    37. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from Defect Centers in High-Purity Silica Glasses Observed under 7.9-eV Excitation,” Phys. Rev. B 45, 586-591 (1992).
    38. L. S. Liao, X. M. Bao, X. Q. Zheng, N. S. Li, and N. B. Min, “Blue Luminescence from Si+ Implanted SiO2 Films Thermally Grown on Crystalline Silicon,” Appl. Phys. Lett. 68, 850-852 (1996).
    39. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous Silica Nanowires: Intensive Blue Light Emitters,” Appl. Phys. Lett. 73, 3076-3078 (1998).
    40. X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, and J. J. Du, “Preparation and Photoluminescence Properties of Amorphous Silica Nanowires,” Chem. Phys. Lett. 336, 53-56 (2001).
    41. G. W. Meng, X. S. Peng, Y. W. Wang, C. Z. Wang, X. F. Wang, and L. D. Zhang, “Synthesis and Photoluminescence of Aligned SiOx Nanowire Arrays,” Appl. Phys. A 76, 119-121 (2003).
    42. S. Kar and S. Chaudhuri, “Catalytic and Non-Catalytic Growth of Amorphous Silica Nanowires and Their Photoluminescence Properties,” Solid State Commun. 133, 151-155 (2005).
    43. E. Comini, G. Faglia, and G. Sberveglieri, ”UV light activation of tin oxide thin films for NO2 sensing at low temperatures” Sensors and Actuators B 78, 73-77 (2001)
    44. Y. Zhang, A. Kolmakov, Y. Lilach, and M. Moskovits, “Electronic Control of Chemistry and Catalysis at the Surface of an Individual Tin Oxide Nanowire,” J. Phys. Chem. B 109, 1923-1929 (2005).
    45. Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, “Laser Ablation Sythesis and Electron Transport Studies of Tin Oxide Nanowires,” Adv. Mater. 15, 1754-1757 (2003).
    46. E. Comini, G. Faglia, and G. Sberveglieri, Z. W. Pan, and Z. L. Wang, “Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide nanobelts,” Appl. Phys. Lett. 81, 1869-1871 (2002).
    47. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, ”Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001).
    48. M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts,” J. Phys. Chem. B 107, 659-663 (2003).
    49. W. I. Park, G. C. Yi, J. W. Kim, and S. M. Park, “Schottky Nanocontacts on ZnO Nanorod Arrays,” Appl. Phys. Lett. 82, 4358-4360 (2003).
    50. S. M. Bradshaw, J. L. Spicer, “Combustion Synthesis of Aluminum Nitride Particles and Whiskers,” J. Am. Ceram. Soc., 82, 2293-2300 (1999).
    51. M. C. Benjamin, C. Wang, R. F. Davis, R.J. Nemanich, “Observation of A Negative Electron-Affinity for Heteroepitaxial AlN on Alpha-SiC(0001),” Appl. Phys. Lett. 64, 3288-3290 (1994).
    52. R. S. Wagner and W. C. Ellis, “Vapor-Solid-Liquid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, 89-90 (1964).
    53. J. Westwater, D. P. Gosain, S. Tomiya and S. Usui, “Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction,” J. Vac. Sci. Technol. B, 15, 554-557 (1997).
    54. A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, 208-211 (1998).
    55. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001).
    56. Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto and D. R. M. Walton, “3D Silicon Oxide Nanostructures: from Nanoflowers to Radiolaria,” J. Mater. Chem. 8, 1859-1864 (1998).
    57. Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zhou and G. Wang, “Synthesis of a-SiO2 Nanowires Using Au Nanoparticle Catalysts on a Silicon Substrate,” J. Mater. Res. 16, 683-686 (2001).
    58. L. Skuja, “Optically Active Oxygen-Deficiency-Related Centers in Amorphous Silicon Dioxide,” J. Non-Cryst. Solids. 239, 16-48 (1998).
    59. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W. B. Choi, N. S. Lee and J. M. Kim, “Catalytic Growth of -Ga2O3 Nanowires by Arc Discharge,” Adv. Mater. 12, 746-750 (2000).
    60. X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun and J. J. Du, “Crystalline Gallium Oxide Nanowires: Intensive Blue Light Emitters,” Chem. Phys. Lett. 328, 5-9 (2000).
    61. Z. W. Pan, Z. R. Dai and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science 291, 1947-1949 (2001).
    62. S. S. Brenner and G. W. Sears, “Mechanism of Whisker Growth-III Nature of Growth Sites,” Acta Met. 4, 268-270 (1956).
    63. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P, Yu, Y. Ding, Q. L. Hang and S.Q. Feng, “Ga2O3 Nanowires Prepared by Physical Evaporation,” Solid State Comm. 109, 677-682 (1999).
    64. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science 270, 1791-1794 (1995).
    65. X. Lu, T. Hanrath, K. P. Johnston and B. A. Korgel, “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate,” Nano Lett. 3, 93-99 (2003).
    66. R. Q. Zhang, Y. Lifshitz and S. T. Lee, “Oxide-Assisted Semiconductor Nanowire Growth,” Adv. Mater. 15, 635-640 (2003).
    67. W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, R. Kalish and S. T. Lee, “Free-Standing Single Crystal Silicon Nanoribbons,” J. Am. Chem. Soc. 123, 11095-11096 (2001).
    68. S. T. Lee, N. Wang and C. S. Lee, “Semiconductor Nanowires: Synthesis, Structure and Properties”, Mater. Sci. Eng. A 286, 16-23 (2000).
    69. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello and S. T. Lee, “Si Nanowires Grown from Silicon Oxide,” Chem. Phys. Lett. 299, 237-242 (1999).
    70. X. D. Wang, C. J. Summers, and Z. L. Wang, “Large-scale Hexagonal-patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor arrays,” Nano Lett. 4, 423-426 (2004).
    71. J. W. P. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. Liu, “Directed Spatial Organization of Zinc Oxide Nanorods,” Nano Lett. 5, 83-86 (2005).
    72. M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-effect Transistors based on Single Semiconducting Oxide Nanobelts,” J. Phys. Chem. B 107, 659-663 (2003).
    73. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001).
    74. X. D. Bai, E. G. Wang, P. X. Gao, and Z. L. Wang, “Measuring the Work Function at a Nanobelt Tip and at a Nanoparticle Surface,” Nano Lett. 3, 1147-1150 (2003).
    75. M. Albrecht, C. T. Rettner, A. Moser, M. E. Best, and B. D. Terris, “Recording Performance of High-density Patterned Perpendicular Magnetic Media,” Appl. Phys. Lett. 81, 2875-2877 (2002).
    76. S. Y. Chou, M. S. Wei, P. R. Krzuss, and P. B. Fischer, “Single-domain Magnetic Pillar Array of 35-nm Diameter and 65-Gbits/in2 Density for Ultrahigh Density Quantum Magnetic Storage,” J. Appl. Phys. 76, 6673-6675 (1994).
    77. X. G. Liu, L. Fu, S. H. Hong, V. P. Dravid, and C. A. Mirkin, “Arrays of Magnetic Nanoparticles Patterned via Dip-pen Nanolithography,” Adv. Mater. 14, 231-234 (2002).
    78. A. D. Kent, T. M. Shaw, S. Vonmolnar, and D. D. Awschalom, “Growth of High-Aspect-Ratio Nanometer-Scale Magnets with Chemical-Vapor-Deposition and Scanning-Tunneling-Microscopy,” Science 262, 1249 (1993).

    Chapter 2
    1. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of Thiol Derivatised Gold Nanoparticles in a Two-Phase Liquid/Liquid System,” J. Chem. Soc., Chem. Commun. 801-805 (1994).
    2. C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 115, 8706-8715 (1993).
    3. P. Y. Su, J. C. Hu, S. L. Cheng, L. J. Chen, and J. M. Liang, “Self-assembled Hexagonal Au Particle Networks on Silicon from Au Nanoparticle Solution,” Appl. Phy. Lett. 84, 3480-3482 (2004)
    4. T. T. Sheng and C. C. Chang, “Transmission Electron Microscopy of Cross Section of Large Scale Integrated Circuits,” IEEE Trans, Electron Devices, ED-23, 531-553 (1976).
    5. R. H. Fowler and L. W. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. London, Ser. A 119, 173-181 (1928).

    Chapter 3
    1. A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, 933-937 (1996).
    2. H. Kohno and S. Takeda, “Self-Organized Chain of Crystalline-Silicon Nanospheres,” Appl. Phys. Lett. 73, 3144-3146 (1998).
    3. Y. G. Wang, A. Z. Jin, and Z. Zhang, “Cu/SiO2-x Nanowires with Compositional Modulation Structure Grown via Thermal Evaporation,” Appl. Phys. Lett. 81, 4425-4427 (2002).
    4. J. L. Gole, J. D. Stout, W. L. Rauch, and Z. L. Wang, “Direct Synthesis of Silicon Nanowires, Silica Nanospheres, and Wire-like Nanosphere Agglomerates,” Appl. Phys. Lett. 76, 2346 (2000).
    5. Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto, and D. R. M. Walton, “3D Silicon Oxide Nanostructures: from Nanoflowers to Radiolaria,” J. Mater. Chem. 8, 1859-1864 (1998).
    6. J. S. Wu, S. Dhara, C. T. Wu, K. H. Chen, Y. F. Chen, and L. C. Chen, “Growth and Optical Properties of Self-organized Au2Si Nanospheres Pea-podded in a Silicon Oxide Nanowire,” Adv. Mater. 14, 1847-1850 (2002).
    7. A. M. Morales and C. M. Lieber, ‘‘A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,’’ Science 279, 208-211 (1998).
    8. Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled using Silicon Nanowire Building Blocks,” Science 291, 851-853 (2001).
    9. L. J. Lauhon, M. S. Gudiksen, C. L. Wang, and C. M. Lieber, “Epitaxial Core-shell and Core-Multishell Nanowire Heterostructures, Nature 420, 57-61 (2002).
    10. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science 287, 1471-1473 (2000).
    11. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous Silica Nanowires: Intensive Blue Light Emitters,” Appl. Phys. Lett. 73, 3076-3078 (1998).
    12. J. Q. Hu, Y. Jiang, X. M. Meng, C. S. Lee, and S. T. Lee, “ A Simple Large-Scale Synthesis of Very Long Aligned Silica Nanowires,“ Chem. Phys. Lett. 367, 339-343 (2003).
    13. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, ”Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001).
    14. H. F. Zhang, C. M. Wang, E. C. Buck, and L. S. Wang, “Synthesis, Characterization, and Manipulation of Helical SiO2 Nanosprings,“ Nano Lett. 3, 577-580 (2003).
    15. W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15, 526-529 (2003).
    16. J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren, “ZnO Nanobridges and Nanonails,” Nano Lett. 3, 235-238 (2003).
    17. Z. R. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and M. J. Mcdermott, “Biommetic Arrays of Oriented Helical ZnO Nanorods and Columns,” J. Am. Chem. Soc. 124, 12954-12955 (2002).
    18. H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, and P. D. Yang, “Dendritic Nanowire Ultraviolet Laser Array,” J. Am. Chem. Soc. 125, 4728-4729 (2003).
    19. H. Q. Yan, R. R. He, J. Pham, and P. D. Yang, “Morphogenesis of One-dimensional ZnO Nano- and Microcrystals,” Adv. Mater. 15, 402-405 (2003).
    20. J. Y. Lao, J. G. Wen, and Z. F. Ren, “Hierarchical ZnO Nanostructures,” Nano Lett. 2, 1287-1291 (2002).
    21. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science 291, 1947-1949 (2001).
    22. Z. L. Wang, “Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides - From Materials to Nanodevices,” Adv. Mater. 15, 432-436 (2003).
    23. Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation,” Adv. Funct. Mater. 13, 9-24 (2003).
    24. Z. L. Wang and Z. C. Kang, Functional and Smart Materials (Plenum, New York 1998).
    25. R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, 89-90 (1964).
    26. G. A. Bootsma and H. J. Gassen, “A Quantitative Study on the Growth of Silicon Whiskers from Silane and Germanium Whiskers from Germane,” J. Crystal Growth 10, 223-234 (1971).
    27. Y. Y. Wu and P. D. Yang, “Direct Observation of Vapor-liquid-solid Nanowire Growth,” J. Am. Chem. Soc. 123, 3165-3166 (2001).
    28. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15, 353-389 (2003).
    29. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from Defect Centers in High-Purity Silica Glasses Observed under 7.9-eV Excitation,” Phys. Rev. B 45, 586-591 (1992).
    30. M. Zhang, E. Ciocan, Y. Bando, K. Wada, L. L. Cheng, and P. Pirouz, “Bright Visible Photoluminescence from Silica Nanotube Flakes Prepared by the Sol-gel Template Method,” Appl. Phys. Lett. 80, 491-493 (2002).
    31. X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun, and J. J. Du, “Preparation and Photoluminescence Properties of Crystalline GeO2 Nanowires,” Chem. Phys. Lett. 349, 210-214 (2001).
    32. J. Y. Zhang, X. M. Bao, Y. H. Ye, and X. L. Tan, “Blue and Red Photoluminescence from Ge+-implanted SiO2 Films and Its Multiple Mechanism,” Appl. Phys. Lett. 73, 1790-1972 (1998).

    Chapter 4
    1. Z. L. Wang, Nanowires and Nanobelts (Kluwer Academic, Boston, 2003), Vols. I
    2. Z. L. Wang, Nanowires and Nanobelts (Kluwer Academic, Boston, 2003), Vols. II
    3. Z. L. Wang and Z. C. Kang, Functional and Smart Materials (Plenum, New York, 1998)
    4. Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation,” Adv. Funct. Mater. 13, 9-24 (2003).
    5. Z. L. Wang, “Functional oxide nanobelts: Materials, Properties and Potential Applications in Nanosystems and Biotechnology,” Annual Rev. Phy. Chem. 55, 159-196 (2004).
    6. Y. G. Wang, A. Z. Jin, and Z. Zhang, “Cu/SiO2-x Nanowires with Compositional Modulation Structure Grown via Thermal Evaporation,” Appl. Phys. Lett. 81, 4425-4427 (2002).
    7. J. L. Gole, J. D. Stout, W. L. Rauch, and Z. L. Wang, “Direct Synthesis of Silicon Nanowires, Silica Nanospheres, and Wire-like Nanosphere Agglomerates,” Appl. Phys. Lett. 76, 2346-2348 (2000).
    8. Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto, and D. R. M. Walton, “3D Silicon Oxide Nanostructures: from Nanoflowers to Radiolaria,” J. Mater. Chem. 8, 1859-1864 (1998).
    9. J. S. Wu, S. Dhara, C. T. Wu, K. H. Chen, Y. F. Chen, and L. C. Chen, “Growth and Optical Properties of Self-organized Au2Si Nanospheres Pea-podded in a Silicon Oxide Nanowire,” Adv. Mater. 14, 1847-1850 (2002).
    10. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous Silica Nanowires: Intensive Blue Light Emitters,” Appl. Phys. Lett. 73, 3076-3078 (1998).
    11. J. Q. Hu, Y. Jiang, X. M. Meng, C. S. Lee, and S. T. Lee, “A Simple Large-scale Synthesis of Very Long Aligned Silica Nanowires,” Chem. Phys. Lett. 367, 339-343 (2003).
    12. X. D. Wang, C. J. Summers, and Z. L. Wang, “Large-scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-Optoelectronics and Nanosensor Arrays,” Nano Lett. 4, 423-426 (2004).
    13. J. W. P. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. Liu, “Directed Spatial Organization of Zinc Oxide Nanorods,” Nano Lett. 5, 83-86 (2005).
    14. J. H. He, W. W. Wu, S. W. Lee, L. J. Chen, Y. L. Chueh, and L. J. Chou, “Synthesis of Blue-Light-Emitting Si1-xGex Oxide Nanowires,” Appl. Phys. Lett. 86, 263109 (2005).
    15. J. Fink, C. J. Kiely, D. Bethell, D. J. Schiffrin, “Self-organization of Nanosized Gold Particles,” Chem. Mater. 10, 922-926 (1998).
    16. J. C. Hu, P. Y. Su, V. Lapeyronie, S. L. Cheng, M. Y. Lin, and L. J. Chen, “Self-Assembled Au Nanoparticle Superlattice via A Displacement Reaction,” J. Electron. Mater. 33, 1058-1063 (2004)
    17. P. Y. Su, J. C. Hu, S. L. Cheng, L. J. Chen, and J. M. Liang, “Self-Assembled Hexagonal Au Particle Networks on Silicon from Au Nanoparticle Solution,” Appl. Phy. Lett. 84, 3480-3482 (2004)
    18. P. S. Shah, M. B. Sigman, Jr., C. A. Stowell, K. T. Lim, K. P. Johnston, and B. A. Korgel, “Single-Step Self-organization of Ordered Macroporous Nanocrystal Thin Films,” Adv. Mater. 15, 971-974 (2003).
    19. J. N. O’Shea, M. A. Philips, M. D. R. Taylor, P. Moriarty, M. Brust, and V. R. Dhanak, “Colloidal Particle Foams: Templates for Au Nanowire Networks?,” Appl. Phys. Lett. 81, 5039-5041 (2002)
    20. C. R. Chen and L. J. Chen, “Structural Evolution and Atomic Structure of Ultrahigh Vacuum Deposited Au Thin Films on Silicon at Low Temperatures,” Appl. Sur. Sci. 92, 507-512 (1996).
    21. A. Prince, G. V. Raynor, and D.S. Evans, Phase Diagrams of Ternary Gold Alloys (Institute of Metals, London, 1990)
    22. J. H. He, Y. L. Chueh, W. W. Wu, S. W. Lee, L. J. Chen and L. J. Chou, “The Growth of SiGe Quantum Rings in Au Thin Films on Epitaxial SiGe on Silicon,” Thin Solid Films 469, 478-482 (2004)
    23. J. H. He, W. W. Wu, Y. L. Chueh, C. L. Hsin, L. J. Chen and L. J. Chen, “Fabrication and Evolution of Self-Assembled Crystalline Si Quantum Rings on (001)Si Mediated by Au Nanodots,” unpublished work.
    24. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten Gallium as a Catalyst for the Large-Scale Growth of Highly Aligned Silica Nanowires,” J. Am. Chem. Soc. 124, 1817-1822 (2002)

    Chapter 5
    1. Z. L. Wang, Ed. Nanowires and Nanobelts, Vol. I: Metal and Semiconductor, Nanowires; Kluwer Academic Publisher: New York, 2003.
    2. Z. L. Wang, Ed. Nanowires and Nanobelts, Vol. II: Nanowires and Nanobelts of Functional Materials; Kluwer Academic Publisher: New York, 2003.
    3. Z. L. Wang, Z. C. Kang, Functional and Smart Materials, Plenum, New York 1998.
    4. S. Ferrere, A. Zaban, and B. A. Gsegg, “Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives,” J. Phys. Chem. B, 101, 4490-4493 (1997).
    5. E. Comini, V. Guidi, C. Malagu, G. Martinelli, Z. Pan, G. Sberveglieri, and Z. L. Wang, “Electrical Properties of Tin Dioxide Two-Dimensional Nanostructures,” J. Phys. Chem. B 108, 1882-1887 (2004).
    6. S. Mathur, S. Barth, H. Shen, J. C. Pyun, and U. Werner, “Size-Dependent Photoconductance in SnO2 Nanowires,” Small 1, 713-717 (2005).
    7. Y. Zhang, A. Kolmakov, S. Chretien, H. Metiu, and M. Moskovits, ”Control of Catalytic Reactions at the Surface of a Metal Oxide Nanowire by Manipulating Electron Density Inside It,” Nano Lett. 4, 403-407 (2004).
    8. E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, and Z. L. Wang, “Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts,” Appl. Phys. Lett. 81, 1869-1871 (2002).
    9. Z. L. Wang, “Nanobelts, Nanowires and Nanodiskettes of Semiconducting Oxides – from Materials to Nanodevices,” Adv. Mater. 15, 432-436 (2003).
    10. Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, “Tin Oxide Nanowires, Nanoribbons, and Nanotubes,” J. Phys. Chem. B 106, 1274-1279 (2002).
    11. Y. Liu, J. Dong, and M. Liu, “Well-Aligned Nano-Box-Beams of SnO2,” Adv. Mater. 16, 353-356 (2004).
    12. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides”Science 291, 1947-1949 (2001).
    13. J. Q. Hu, Y. Bando, Q. L. Liu, and D. Golberg, “Laser-Ablation Growth and Optical Properties of Wide and Long Single-Crystal SnO2 Ribbons,” Adv. Funct. Mater. 13, 493-496 (2003).
    14. S. V. Khare, S. Kodambaka, D. D. Jonson, I. Petrov, and J. E. Greene, “Determining Absolute Orientation-dependent Step Energies: A General Theory for the Wulff-Construction and for Anisotropic Two-dimensional Island Shape Fluctuations,” Surf. Sci. 522, 75-83 (2003).
    15. G. Wulff and Z. Kristallogr, “Velocity of Growth and Dissolution of Crystal Faces,” Mineral. 34, 449-530 (1901).
    16. Beltrán, J. Andrés, E. Longo, and E. R. Leite, “Thermodynamic Argument About SnO2 Nanoribbon Growth,”Appl. Phys. Lett. 83, 635-637 (2003).
    17. J. Oviedo and M. J. Gillan,“Energetics and Structure of Stoichiometric SnO2 Surfaces Studied by First-principles Calculations,” Surf. Sci. 463, 93-101 (2000).
    18. B. Slater, C. R. Catlow, D. H. Gay, D. E. Williams, and V. Dusastre, “Study of Surface Segregation of Antimony on SnO2 Surfaces by Cmputer Simulation Techniques,” J. Phys. Chem. B 103, 10644-10650 (1999)
    19. A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, “In Situ-Grown Carbon Nanotube Array with Excellent Field Emission Characteristics,” Appl. Phys. Lett. 76, 3813-3815 (2000).
    20. Z. W. Pan, H. L. Lai, F. C. K. Au, X. F. Duan, W. Y. Zhou, W. S. Shi, N. Wang, C. S. Lee, N. B. Wong, S. T. Lee, and S. S. Xie, “Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties,” Adv. Mater. 12, 1186-1190 (2000).
    21. E. J. Chi, J. Y. Shim, H. K. Baik, and S. M. Lee, “Fabrication of Amorphous-carbon-nitride Field Emitters,” Appl. Phys. Lett. 71, 324-327 (1997).
    22. T. Sugino, S. Kawasaki, K. Tanioka, and J. Shirafuji, “Electron Emission from Boron Nitride Coated Si Field Emitters,” Appl. Phys. Lett. 71, 2704-2706 (1997).
    23. Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, “Field Emission From MoO3 Nanobelts”Appl. Phys. Lett. 81, 5048-5050 (2002)
    24. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field Emission from Well-Aligned Zinc Oxide Nanowires Grown at Low Temperature,” Appl. Phys. Lett. 81, 3648-3650 (2002)
    25. Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, and I. C. Chen, “Characterization and Field-Emission Properties of Needle-Like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. 13, 811-814 (2003).
    26. J. Chen, S. Z. Deng, N. S. Xu, S. Wang, X. Wen, S. Yang, C. Yang, J. Wang, and W. Ge, “Field Emission from Crystalline Copper Sulphide Nanowire Arrays,” Appl. Phys. Lett. 80, 3620-3622 (2002).
    27. R. H. Fowler and L. W. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. London, Ser. A 119, 173-181 (1928).
    28. T. Minami, T. Miyata, and T. Yamamoto, “Work Function of Transparent Conducting Multicomponent Oxide Thin Films Prepared by Magnetron Sputtering,” Surf. Coat. Technol. 108, 583-587 (1998).

    Chapter 6
    1. Z. L. Wang (Ed.), Nanowires and Nanobelts – Materials, Properties and Devices, Metal and Semiconductor Nanowires, vol. I, Kluwer Academic Publisher, Dordrecht, 2003.
    2. Z. L. Wang (Ed.), Nanowires and Nanobelts – Materials, Properties and Devices, Nanowires and Nanobelts of Functional Materials, vol. II, Kluwer Academic Publisher, Dordrecht, 2003.
    3. E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, and Z. L. Wang, “Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts,” Appl. Phys. Lett. 81, 1869-1871 (2002).
    4. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001).
    5. J. Hu, T. W. Odom, and C. M. Liber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32, 435-445 (1999).
    6. C. Yu, Q. Hao, S. Saha, L. Shi, X. Y. Kong, and Z. L. Wang, “Integration of Metal Oxide Nanobelts with Microsystems for Nerve Agent Detection,” Appl. Phys. Lett. 86, 063101 (2005).
    7. Z. L. Wang, X. Y. Kong, and J. M. Zuo, “Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces,” Phys. Rev. Lett. 91, 185502 (2003).
    8. P. X. Gao and Z. L. Wang, “Self-Assembled Nanowire-Nanoribbon Junction Arrays of ZnO,” J. Phys. Chem. B 106, 12653-12658 (2002).
    9. J. Y. Lao, J. G. Wen, and Z. F. Ren, “Hierarchical ZnO Nanostructures,” Nano Lett. 2, 1287-1291 (2002).
    10. X. Y. Kong and Z. L. Wang, “Spontaneous Polarization-induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts,” Nano Lett. 3, 1625-1631 (2003).
    11. X. Y. Kong and Z. L. Wang, “Polar-Surface Dominated ZnO Nanobelts and the Electrostatic Energy Induced Nanohelixes/Nanosprings,” Appl. Phys. Lett. 84, 975-977 (2004).
    12. X. Y. Kong, Y. Ding, R. S. Yang, and Z. L. Wang, “Single-Crystal Nanorings Formed by Epitaxial Self-coiling of Polar-nanobelts,” Science 303, 1348-1351 (2004).
    13. W. L. Hughes and Z. L. Wang, “Formation of Piezoelectric Single-Crystal Nanorings and Nanobows,” J. Am. Chem. Soc. 126, 6703-6709 (2004).
    14. Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled using Silicon Nanowire Building Blocks,” Science 291, 851-853 (2001).
    15. Z. L. Wang and Z. W. Pan, “Junctions and Networks of SnO Nanoribbons,” Adv. Mater. 14, 1029-1032 (2002).
    16. X. X. Cao, Y. Xie, and L. Li, “Spontaneous Organization of Three-dimensionally Packed Trigonal Selenium Microspheres into Large-area Nanowire Networks,” Adv. Mater. 15, 1914-1918 (2003).
    17. A. Tao, F. Kim, C. Hess, J. Goldberger, R He, Y. Sun, Y. Xia, and P. D. Yang, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing using Surface-enhanced Raman Spectroscopy,” Nano Lett. 3. 1229-1233 (2003).
    18. A. M. Cassell, G. C. McCool, H. T. Ng, J. E. Koehne, B. Chen, J. Li, J. Han, and M. Meyyappan, “Carbon Nanotube Networks by Chemical Vapor Deposition,” Appl, Phys. Lett. 82, 817-819 (2003).
    19. Y. Huang, X. F. Duan, Q. Q. Wei and C. M. Lieber, “Directed Assembly of One-Dimensional Nanostructures into Functional Networks,” Science 291, 630-633 (2001).
    20. B. Yang, M. S. Marcus, D. G. Keppel, P. P. Zhang, Z. W. Li, B. J. Larson, D. E. Savage, J. M. Simmons, O. M. Castellini, M. A. Eriksson, and M. G. Lagallya, “Template-Directed Carbon Nanotube Network using Self-organized Si Nanocrystals,” Appl, Phys. Lett. 86, 263107 (2005).
    21. M. R. Diehl, S. N. Yaliraki, R. A. Beckman, M. B. James and R. Heath, “Self-Assembled, Deterministic Carbon Nanotube Wiring Networks,” Angew. Chem. Int. Ed. 41, 353-356 (2002).
    22. S. P. Ge, K. L. Jiang, X. X. Lu, Y. F. Chen, R. M. Wang, and S. S. Fan, “Orientation-Controlled Growth of Single-Crystal Silicon-Nanowire Arrays,” Adv. Mater. 17, 56-61 (2005).

    Chapter 7
    1. C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, “Structural, Optical, and Surface Acoustic Wave Properties of Epitaxial ZnO Films Grown on Sapphire by Metalorganic Chemical Vapor Deposition,” J. Appl. Phys. 85, 2595-2602 (1999).
    2. T. Shibata, K. Unno, E. Makino, Y. Ito, and S. Shimada, “Micromachining of Diamond Probes for Atomic Force Microscopy Applications,” Sens. Actuators, A 102, 106-113 (2002).
    3. S. C. Minne, S. R. Manalis, and C. F. Quate, “Parallel Atomic Force Microscopy Using Cantilevers with Integrated Piezoresistive Sensors and Integrated Piezoelectric Actuators,” Appl. Phys. Lett. 67, 3918-3920 (1995).
    4. H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches,” Adv. Mater. 14, 158-160 (2002).
    5. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001).
    6. Z. L. Wang, “Zinc Oxide Nanostructures: Growth, Properties and Applications,” J. Phys.: Condens. Mater. 16, R829-R858 (2004).
    7. J. Zhong, S. Muthukumar, Y. Chen, Y. Lua, H. M. Ng, W. Jiang, and E. L. Garfunkel “Ga-Doped ZnO Single-crystal Nanotips Grown on Fused Silica by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett. 83, 3401-3403 (2003).
    8. H. J. Choi, H. K. Seong, J. Y. Chang, K. Lee, Y. J. Park, J. J. Kim, S. K. Lee, R. R. He, T. Kuykendall, and P. D. Yang, “Single-Crystalline Diluted Magnetic Semiconductor GaN:Mn Nanowires,” Adv. Mater. 17, 1351-1356 (2005).
    9. G. F. Zheng, W. Lu, S. Jin, and C. M. Lieber, “Synthesis and Fabrication of High-performance N-Type Silicon Nanowire Transistors,” Adv. Mater. 16, 1890-1893 (2004).
    10. J. G. Wen, J. Y. Lao, D. Z. Wang, T. M. Kyaw, Y. L. Foo, and Z. F. Ren, “Self-assembly of Semiconducting Oxide Nanowires, Nanorods, and Nanoribbons,” Chem. Phys. Lett. 372, 717-722 (2003).
    11. Z. H. Zhong, Q. Qian, D. L. Wang, and C. M. Lieber, “Synthesis of P-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices,” Nano Lett. 3, 343-346 (2003).
    12. R. Cebulla, R. Wendt, and K. Ellmer, “Al-doped Zinc Oxide Films Deposited by Simultaneous RF and DC Excitation of A Magnetron Plasma: Relationships between Plasma Parameters and Structural and Electrical Film Properties,” J. Appl. Phys. 83, 1087-1095 (1998).
    13. K. L. Chopra, S. Major, and D. K. Pandya, “Transparent Conductors - A Status Review,” Thin Solid Films 102, 1-46 (1983).
    14. R. P. Wang, A. W. Sleight, and D. Cleary, “High Conductivity in Gallium-doped Zinc Oxide Powders,” Chem. Mater. 8, 433-439 (1996).
    15. A. E. Jiménez-González, “Modification of ZnO Thin Films by Ni, Cu, and Cd Doping,” J. Solid State Chem. 128, 176-180 (1997).
    16. A. C. Wang, J. Y. Dai, J. Z. Cheng, M. P. Chudzik, T. J. Marks, R. P. H. Chang, and C. R. Kannewurf, “Charge Transport, Optical Transparency, Microstructure, and Processing Relationships in Transparent Conductive Indium-zinc Oxide Films Grown by Low-Pressure Metal-organic Chemical Vapor Deposition,” Appl. Phys. Lett. 73, 327-329 (1998).
    17. I. G. Brown, J. E. Gavin, and R. A. MacGill, “High-Current Ion-source,” Appl. Phys. Lett. 47, 358-360 (1985).
    18. R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, 89-91 (1964).
    19. X. D. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays,” Nano Lett. 4, 423-426 (2004).
    20. T. Monteiro, C. Boemare, M. J. Soares, E. Rita, and E. Alves, “Photoluminescence and Damage Recovery Studies in Fe-implanted ZnO Single Crystals,” J. Appl. Phys. 93, 8995-9000 (2003).
    21. E. Sonder, R. A. Zuhr, and R. E. Valiga, “Annealing of Damage and Stability of Implanted Ions in ZnO Crystals,” J. Appl. Phys. 64, 1140-1144 (1988).
    22. D. J. Qiu, H. Z. Wu, A. M. Feng, Y. F. Lao, N. B. Chen, and T. N. Xu, “Annealing Effects on The Microstructure and Photoluminescence Properties of Ni-doped ZnO Films,” Appl. Sur. Sci. 222, 263-268 (2004).
    23. Q. H. Li, Q. Wan, Y. X. Liang, and T. H. Wang, “Electronic Transport through Individual ZnO Nanowires,” Appl. Phys. Lett. 84, 4556-4558 (2004).

    Chapter 8
    1. K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, “Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes,” Nano Lett. 3, 13-18 (2003).
    2. X. D. Wang, C. J. Summers, and Z. L. Wang, “Large-scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-Optoelectronics and Nanosensor Arrays,” Nano Lett. 4, 423-426 (2004).
    3. J. W. P. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. Liu, “Directed Spatial Organization of Zinc Oxide Nanorods,” Nano Lett. 5, 83-86 (2005).
    4. C. M. Lieber, “One-Dimensional Nanostructures: Chemistry, Chysics & Applications,” Solid State Comm. 107, 607-616 (1998).
    5. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15, 353-389 (2003).
    6. Nanowires and Nanobelts, Vol. I: Metal and Semiconductor Nanowires, and Vol. II: Nanowire and Nanobelt of Functional Oxide; Wang Z. L., Ed.; Kluwer Academic Publisher: Norwell, MA, 2003.
    7. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001).
    8. X. Y. Kong and Z. L. Wang, “Spontaneous Polarization-induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts,” Nano Lett. 3, 1625-1631 (2003).
    9. M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-effect Transistors Based on Single Semiconducting Oxides Nanobelts,” J. Phys. Chem. B 107, 659-663 (2003).
    10. X. D. Wang, J. H. Song, P. Li, J. H. Ryou, R. D. Dupuis, C. J. Summers, and Z. L. Wang, “Growth of Uniformly Aligned ZnO Nanowire Heterojunction Arrays on GaN, AlN, and Al0.5Ga0.5N Substrates,” J. Am. Chem. Soc., 127, 7920-7923 (2005).
    11. X. D. Bai, E. G. Wang, P. X. Gao, and Z. L. Wang, “Measuring the Work Function at A Nanobelt Tip and at A Nanoparticle Surface,” Nano Lett. 3, 1147-1150 (2003).
    12. M. Albrecht, C. T. Rettner, A. Moser, M. E. Best, B. D. Terris, “Recording Performance of High-Density Patterned Perpendicular Magnetic Media,” Appl. Phys. Lett. 81, 2875-2877 (2002).
    13. S. Y. Chou, M. S. Wei, P. R. Krzuss, and P. B. Fischer, “Single-domain Magnetic Pillar Array of 35-nm Diameter and 65-Gbits/In2 Density for Ultrahigh Density Quantum Magnetic Storage,” J. Appl. Phys. 76, 6673-6675 (1994).
    14. X. G. Liu, L. Fu, S. H. Hong, V. P. Dravid, and C. A. Mirkin, “Arrays of Magnetic Nanoparticles Patterned via Dip-Pen Nanolithography,” Adv. Mater. 14, 231-234 (2002).
    15. A. D. Kent, T. M. Shaw, S. Vonmolnar, D. D. Awschalom, “Growth of High-Aspect-Ratio Nanometer-Scale Magnets with Chemical-Vapor-Deposition and Scanning-Tunneling-Microscopy,” Science 262, 1249-1252 (1993).
    Chapter 9
    1. S. M. Bradshaw and J. L. Spicer, “Combustion Synthesis of Aluminum Nitride Particles and Whiskers,” J. Am. Ceram. Soc. 82, 2293-2300 (1999).
    2. M. C. Benjamin, C. Wang, R. F. Davis, and R. J. Nemanich, “Observation of a Negative Electron-affinity for Heteroepitaxial AlN on Alpha(6h)-SiC(0001),” Appl. Phys. Lett. 64, 3288-3290 (1994).
    3. C. Liu, Z. Hu, Q. Wu, X. Z. Wang, Y. Chen, H. Sang, J. M. Zhu, S. Z. Deng, and N. S. Xu, “Vapor-Solid Growth and Characterization of Aluminum Nitride Nanocones,” J. Am. Chem. Soc. 127, 1318-1322 (2005).
    4. S. C. Shi, C. F. Chen, S. Chattopadhyay, Z. H. Lan, K. H. Chen, and L. C. Chen, “Growth of Single-Crystalline Wurtzite Aluminum Nitride Nanotips with A Self-Selective Apex Angle,” Adv. Func. Mater. 15, 781-786 (2005).
    5. L. W. Yin, Y. Bando, Y. C. Zhu, M. S. Li, Y. B. Li, and D. Golberg, “Single-crystalline AIN Nanotubes with Carbon-Layer Coatings on The Outer and Inner Surfaces via a Multiwalled-Carbon-Nanotube-Template-Induced Route,” Adv. Mater. 17, 110-114 (2005).
    6. M. C. Wang, M. S. Tsai, and N. C. Wu, “Effect of Heat Treatment on Phase Transformation of Aluminum Nitride Ultrafine Powder Prepared by Chemical Vapor Deposition,” J. Crystal Growth 210, 487-495 (2000).
    7. J. R. Park, S. W. Rhee, and K. H. Lee, “Gas-Phase Synthesis of AlN Powders from AlCl3-NH3-N2,” J. Mater. Sci. 28, 57-64 (1993).
    8. A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, “In Situ-Grown Carbon Nanotube Array with Excellent Field Emission Characteristics,” Appl. Phys. Lett. 76, 3813-3815 (2000).
    9. Z. W. Pan, H. L. Lai, F. C. K. Au, X. F. Duan, W. Y. Zhou, W. S. Shi, N.Wang, C. S. Lee, N. B. Wong, S. T. Lee, and S. S. Xie, “Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties,” Adv. Mater. 12, 1186-1190 (2000).
    10. E. J. Chi, J. Y. Shim, H. K. Baik, and S. M. Lee, “Fabrication of Amorphous-Carbon-Nitride Field Emitters,” Appl. Phys. Lett. 71, 324-326 (1997).
    11. T. Sugino, S. Kawasaki, K. Tanioka, and J. Shirafuji, “Electron Emission from Boron Nitride Coated Si Field Emitters,” Appl. Phys. Lett. 71, 2704-2706 (1997).
    12. Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, “Field Emission from MoO3 Nanobelts,” Appl. Phys. Lett. 81, 5048-5050 (2002).
    13. Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, and I. C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. 13, 811-814 (2003).
    14. R. H. Fowler and L. W. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. London, Ser. A 119, 173-181 (1928).
    15. R. S. Chen, Y. S. Huang, K. H. Lee, and Y. Jeong, “Template-Based Carbon Nanotubes and Their Application to a Field Emitter,” Appl. Phys. Lett. 78, 2052-2054 (2004).
    16. J. Li, K. B. Nam, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Band-edge Photoluminescence of AIN Epilayers,” Appl. Phys. Lett. 81, 3365-3367 (2002).
    17. Y. C. Lan, X. L. Chen, Y. G. Cao, Y. P. Xu, L. D. Xun, T. Xu, and J. K. Liang, “Low-Temperature Synthesis and Photoluminescence of AlN,” J. Crystal Growth 207, 247-250 (1999).

    Chapter 11
    1. Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications,” Adv. Mater. 12, 693-713 (2000).
    2. O. D. Velev and E. W. Kaler, “Structured Porous Materials via Colloidal Crystal Templating: from Inorganic Oxides to Metals,” Adv. Mater. 12, 531-534 (2000).
    3. O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, “Materials: a Class of Porous Metallic Nanostructures,” Nature 401, 548-548 (1999).
    4. P. Jiang, J. Cizeron; J. F. Bertone, and V. L. Colvin, “Preparation of Macroporous Metal Films from Colloidal Crystals,” J. Am. Chem. Soc. 121, 7957-7958 (1999).
    5. Y. A. Vlasov, N. Yao, and D. J. Norris, “Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots,” Adv. Mater. 112, 165-169 (1999).
    6. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, and I. Khayrullin, “Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths,” Science 282, 897-901 (1998).
    7. B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids,” Science 281, 538-540 (1998).
    8. J. E. G. J. Wijnhoven, and W. L. Vos, “Preparation of Photonic Crystals Made of Air Spheres in Titania,” Science 281, 802-804 (1998).
    9. S. A. Johnson, P. J. Ollivier, and T. E. Mallouk, “Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates,” Science 283, 963-965 (1999).
    10. J. C. Hulteen and R. P. V. Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13, 1553-1558 (1995).
    11. C. L. Haynes and R. P. V. Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105, 5599-5611 (2001).
    12. H. T. Soh, K. W. Guarini, and C. F. Quate, “Scanning Probe Lithography,” (Kluwer, Boston, 2001).
    13. X. Jin and W. N. Unertl, “Submicrometer Modification of Polymer Surfaces with a Surface Force Microscope,” Appl. Phys. Lett. 61, 657-659 (1992).
    14. Y. Kim and C. M. Lieber, “Machining Oxide Thin-Films with An Atomic Force Microscope - Pattern and Object Formation on the Nanometer Scale,” Science 257, 375-377 (1992).
    15. M. Wendel, S. Kühn, H. Lorenz, J. P. Kotthaus, and M. Holland, “Nanolithography with an Atomic-Force Microscope for Integrated Fabrication of Quantum Electronic Devices,” Appl. Phys. Lett. 65, 1775-1777 (1994).
    16. B. Klehn and U. Kunze, “Nanolithography with an Atomic Force Microscope by Means of Vector-scan Controlled Dynamic Plowing,” J. Appl. Phys. 88, 3897-3903 (1999).
    17. K. Wiesauer and G. Springholz, “Fabrication of Semiconductor Nanostructures by Nanoindentation of Photoresist Layers using Atomic force microscopy,” J. Appl. Phys. 88, 7289-7297 (2000).
    18. L. L. Sohn and R. L. Willett, “Fabrication of Nanostructures Using Atomic-Force-Microscope-Based Lithography,” Appl. Phys. Lett. 67, 1552-1554 (1995).
    19. V. Bouchiat and D. Esteve, “Lift-off Lithography using an Atomic Force Microscope,” Appl. Phys. Lett. 69, 3098-3100 (1996).
    20. S. Hu, A. Hamidi, S. Altmeyer, T. Köster, B. Spangenberg, and H. Kurz, “Fabrication of Silicon and Metal Nanowires and Dots Using Mechanical Atomic Force Lithography,” J. Vac. Sci. Technol. B 16, 2822-2824 (1998).
    21. S. D. Sarma, “Ferromagnetic Semiconductors: A Giant Appears in Spintronics,” Nat. Mater. 2, 292-294 (2003)
    22. S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide Band Gap Ferromagnetic Semiconductors and Oxides,” J. Appl. Phys. 93, 1-13 (2003).
    23. H. Akinaga and H. Ohno, “Semiconductor Spintronics,” IEEE Trans. Nanotechnol. 1, 19-31 (2002).
    24. T. Dietl, “Ferromagnetic Semiconductors,” Semicond. Sci. Technol. 17, 377-392 (2002).
    25. I Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, “Persistent Sourcing of Coherent Spins for Multifunctional Semiconductor Spintronics,” Nature 411, 770-772 (2001).
    26. H. Ohno, “Making Nonmagnetic Semiconductors Ferromagnetic,” Science 281, 951-956 (1998).
    27. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, “Spintronics: A Spin-based Electronics Vision for the Future,” Science 294, 1488-1495 (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE