研究生: |
劉政諺 Liu, Cheng-Yen |
---|---|
論文名稱: |
單一結構雙色電漿子奈米雷射之研究 Dual-Color Plasmonic Nanolasers in Single Nanostructures |
指導教授: |
果尚志
Gwo, Shangjr |
口試委員: |
盧廷昌
Lu, Tien-Chang 呂明諺 Lu, Ming-Yen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 表面電漿極化子 、受激輻射引致表面電漿子放大 、電漿子奈米雷射 、氮化物半導體 、奈米柱 、雙色氮化銦鎵 、半導體奈米結構 |
外文關鍵詞: | Surface Plasmon Polariton, Spaser, Plasmonic Nanolaser, Nitride Semiconductor, Nanorod, Dual-color InGaN, Semiconductor Nanostructure |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體雷射在微小化的過程中,會遇到光學共振腔先天條件的限制,而無法將尺寸縮小於〖((λ)⁄(2n))〗^3,限制了光通訊產業的發展,科學家研究出許多突破繞射極限的方法,如光子晶體等等,但礙於技術及成本門檻,無法在產業界應用,2003年Stockman和Bergman提出了受激輻射引致表面電漿子放大(Surface Plasmon Amplification by Stimulated Emission of Radiation, SPASER),或簡稱電漿子雷射,這是一個全新的領域,不在使用光學共振腔,取而代替的是電漿子共振腔,利用金屬與介電質介面的次波長範圍,能夠有效的將光場侷限在幾個奈米的尺度,達到以電漿子模態共振所產生的雷射。
本論文主題為使用電漿輔助分子束磊晶系統成長的高品質的雙色雙核氮化銦鎵/氮化鎵奈米柱,並調控兩個氮化銦鎵核的能隙,使在單根奈米柱能夠同時輻射復合出兩種顏色的光,並與分子束磊晶系統成長的鋁膜做結合,鋁有著比銀更佳的穩定性,只會氧化表層幾奈米,在應用上能比銀膜更廣。而高光增益係數的氮化銦鎵奈米柱,搭配低損耗的磊晶成長單晶鋁膜是非常好的選擇。並驗證電漿子雷射獨特的自動調諧機制(autotuning mechanism),電漿子雷射輻射波長與共振腔長度相依性較小,可以在不改變電漿子共振腔的狀況下,同時兩個不同頻率的電漿子在相同的共振腔內達到雷射回饋機制。
Surface plasmon polaritons (SPPs) can confine the optical field into a deep subwavelength scale. In the wave propagation phenomena, the group velocity of SPP is greatly slowed down (large group index) due to the dispersion curve of surface plasmon. Moreover, the group index is wavelength dependent and can be related to the greatly enhanced modal gain and confinement factor. Recently, plasmonic nanolasers has been demonstrated that can break the three-dimensional (3D) optical diffraction limit. In this work, we have successfully realized the dual-color plasmonic nanolasers on a metal−insulator−semiconductor nanostructure platform, using single dual-core InGaN/GaN nanorods deposited on single crystalline epitaxial Al film with dual In compositions in the nanorod core. Different from conventional laser, plasmonic nanolaser can lase two coherent light in single cavities. Especially, dual-color lasing action is achieved via a unique “autotuning” mechanism based on the property of weak cavity size dependence inherent in plasmonic nanolasers
1. Hall, R. N., Fenner, G. E., Kingsley, J. D., Soltys, T. J. & Carlson, R. O. Coherent Light Emission From GaAs Junctions. Physical Review Letters 9, 366-368 (1962).
2. Hiroshi, A., Masahiro, K., Kazumasa, H. & Isamu, A. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Japanese Journal of Applied Physics 28, L2112 (1989).
3. Isamu Akasaki - Nobel Lecture: Fascinated Journeys into Blue Light. Nobelprize.org (2014).
4. Hiroshi Amano - Nobel Lecture: Growth of GaN on Sapphire by Low Temperature Deposited Buffer Layer and Realization of P-Type GaN by Mg-Doping Followed by LEEBI Treatment. Nobelprize.org (2014).
5. Shuji, N. & Takashi, M. High-Quality InGaN Films Grown on GaN Films. Japanese Journal of Applied Physics 31, L1457 (1992).
6. Shuji Nakamura - Nobel Lecture: Background Story of the Invention of Efficient Blue InGaN Light Emitting Diodes. Nobelprize.org (2014).
7. Lu, T.-C., Kao, C.-C., Kuo, H.-C., Huang, G.-S. & Wang, S.-C. CW lasing of current injection blue GaN-based vertical cavity surface emitting laser. Applied Physics Letters 92, 141102 (2008).
8. Yu, H., Kunimichi, O., Hiroaki, M. & Takashi, M. Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection. Applied Physics Express 1, 121102 (2008).
9. Steranka, F. M. et al. High Power LEDs – Technology Status and Market Applications. physica status solidi (a) 194, 380-388 (2002).
10. Gwo, S. et al. in Semiconductors and Semimetals Vol. Volume 96 (eds Mi Zetian & Jagadish Chennupati) 341-384 (Elsevier, 2017).
11. Masaki, Y., Akihiko, K., Masashi, M., Nobuhiko, F. & Katsumi, K. Growth of Self-Organized GaN Nanostructures on A l 2 O 3 (0001) by RF-Radical Source Molecular Beam Epitaxy. Japanese Journal of Applied Physics 36, L459 (1997).
12. Yoshizawa, M. et al. Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks. Journal of Crystal Growth 189–190, 138-141 (1998).
13. Han, W., Fan, S., Li, Q. & Hu, Y. Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction. Science 277, 1287-1289 (1997).
14. Sanchez-Garcia, M. A. et al. The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1). Journal of Crystal Growth 183, 23-30 (1998).
15. Sánchez-García, M. A. et al. Crystal Morphology and Optical Emissions of GaN layers grown on Si(111) substrates by Molecular Beam Epitaxy. MRS Internet Journal of Nitride Semiconductor Research 3 (1998).
16. Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nature materials 1, 106-110 (2002).
17. Kim, H.-M. et al. High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays. Nano Letters 4, 1059-1062 (2004).
18. Kikuchi, A., Yamano, K., Tada, M. & Kishino, K. Stimulated emission from GaN nanocolumns. physica status solidi (b) 241, 2754-2758 (2004).
19. Akihiko, K., Mizue, K., Makoto, T. & Katsumi, K. InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate. Japanese Journal of Applied Physics 43, L1524 (2004).
20. Lin, H.-W., Lu, Y.-J., Chen, H.-Y., Lee, H.-M. & Gwo, S. InGaN/GaN nanorod array white light-emitting diode. Applied Physics Letters 97, 073101 (2010).
21. Lu, Y.-J., Lin, H.-W., Chen, H.-Y., Yang, Y.-C. & Gwo, S. Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources. Applied Physics Letters 98, 233101 (2011).
22. Zhao, S., Djavid, M. & Mi, Z. Surface Emitting, High Efficiency Near-Vacuum Ultraviolet Light Source with Aluminum Nitride Nanowires Monolithically Grown on Silicon. Nano Letters 15, 7006-7009 (2015).
23. Connie, A. T. et al. Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy. Applied Physics Letters 106, 213105 (2015).
24. Zhao, S. et al. Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources. Sci. Rep. 5 (2015).
25. Zhao, S. et al. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band. Applied Physics Letters 107, 043101 (2015).
26. Li, K. H., LiuX, WangQ, ZhaoS & MiZ. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nat Nano 10, 140-144 (2015).
27. Zhao, S., Liu, X., Wu, Y. & Mi, Z. An electrically pumped 239 nm AlGaN nanowire laser operating at room temperature. Applied Physics Letters 109, 191106 (2016).
28. Zhao, S. et al. Three-Dimensional Quantum Confinement of Charge Carriers in Self-Organized AlGaN Nanowires: A Viable Route to Electrically Injected Deep Ultraviolet Lasers. Nano Letters (2015).
29. Jackson, J. D. Classical electrodynamics. 3rd edn, (1999).
30. Shangjr, G. & Chih-Kang, S. Semiconductor plasmonic nanolasers: current status and perspectives. Reports on Progress in Physics 79, 086501 (2016).
31. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003).
32. Rakić, A. D. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl. Opt. 34, 4755-4767 (1995).
33. Johnson, P. B. & Christy, R. W. Optical Constants of the Noble Metals. Physical Review B 6, 4370-4379 (1972).
34. West, P. R. et al. Searching for better plasmonic materials. Laser & Photonics Reviews 4, 795-808 (2010).
35. Palik, E. D. Handbook of Optical Constants of Solids. (1998).
36. Davy, G. & Stephen, K. G. Aluminium plasmonics. Journal of Physics D: Applied Physics 48, 184001 (2015).
37. Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534-538 (2015).
38. Ozbay, E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science 311, 189-193 (2006).
39. Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241-245 (2003).
40. Bergman, D. J. & Stockman, M. I. Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems. Physical Review Letters 90, 027402 (2003).
41. Stockman, M. I. Spasers explained. Nat Photon 2, 327-329 (2008).
42. Li, D. & Stockman, M. I. Electric Spaser in the Extreme Quantum Limit. Physical Review Letters 110, 106803 (2013).
43. Hill, M. T. et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Optics Express 17, 11107-11112 (2009).
44. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110-1112 (2009).
45. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629-632 (2009).
46. Ma, R.-M., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature materials 10, 110-113 (2011).
47. Wu, C.-Y. et al. Plasmonic Green Nanolaser Based on a Metal–Oxide–Semiconductor Structure. Nano Letters 11, 4256-4260 (2011).
48. Lu, Y. J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450-453 (2012).
49. Lu, Y.-J. et al. All-Color Plasmonic Nanolasers with Ultralow Thresholds: Autotuning Mechanism for Single-Mode Lasing. Nano Letters 14, 4381-4388 (2014).
50. Hou, Y., Renwick, P., Liu, B., Bai, J. & Wang, T. Room temperature plasmonic lasing in a continuous wave operation mode from an InGaN/GaN single nanorod with a low threshold. Scientific reports 4, 5014 (2014).
51. Sidiropoulos, T. P. H. et al. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nature Physics 10, 870-876 (2014).
52. Zhang, Q. et al. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat Commun 5 (2014).
53. Ho, J. et al. Low-Threshold near-Infrared GaAs–AlGaAs Core–Shell Nanowire Plasmon Laser. ACS Photonics 2, 165-171 (2015).
54. Chou, Y.-H. et al. Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers. ACS Nano 9, 3978-3983 (2015).
55. Chou, B.-T. et al. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers. Scientific reports 6, 19887 (2016).
56. Chou, Y.-H. et al. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum. Nano Letters 16, 3179-3186 (2016).
57. Ho, J. et al. A Nanowire-Based Plasmonic Quantum Dot Laser. Nano Letters 16, 2845-2850 (2016).
58. Lee, C.-J. et al. Low-Threshold Plasmonic Lasers on a Single-Crystalline Epitaxial Silver Platform at Telecom Wavelength. ACS Photonics 4, 1431-1439 (2017).
59. Kwon, S.-H. et al. Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity. Nano Letters 10, 3679-3683 (2010).
60. Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204-207 (2012).
61. Suh, J. Y. et al. Plasmonic Bowtie Nanolaser Arrays. Nano Letters 12, 5769-5774 (2012).
62. van Beijnum, F. et al. Surface Plasmon Lasing Observed in Metal Hole Arrays. Physical Review Letters 110, 206802 (2013).
63. Sorger, V. J. & Zhang, X. Spotlight on Plasmon Lasers. Science 333, 709-710 (2011).
64. Brongersma, M. L. & Shalaev, V. M. The Case for Plasmonics. Science 328, 440-441 (2010).
65. Lu, Y.-J. Nitride Semiconductor Based Plasmonic Nanolasers Ph.D degree thesis, National Tsing Hua University, (2013).
66. Yu, G. et al. Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method. Applied Physics Letters 70, 3209-3211 (1997).
67. Cho, A. Y. & Arthur, J. R. Molecular beam epitaxy. Progress in Solid State Chemistry 10, 157-191 (1975).
68. Website of Veeco "MBE Technologies".
69. Sitter, M. H. H. Molecular beam epitaxy. (Springer, New York, 1989).
70. Li, X. L., Wang, C. X. & Yang, G. W. Thermodynamic theory of growth of nanostructures. Progress in Materials Science 64, 121-199 (2014).
71. Landré, O., Bougerol, C., Renevier, H. & Daudin, B. Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy. Nanotechnology 20, 415602 (2009).
72. Bardoux, R. et al. Polarized emission from GaN/AlN quantum dots: Single-dot spectroscopy and symmetry-based theory. Physical Review B 77, 235315 (2008).
73. Braun, W. Applied RHEED: reflection high-energy electron diffraction during crystal growth. Vol. 154 (Springer Science & Business Media, 1999).
74. Chen, H.-Y., Lin, H.-W., Shen, C.-H. & Gwo, S. Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy. Applied Physics Letters 89, 243105 (2006).
75. Li, A. Interaction of nanoparticles with radiation. arXiv preprint astro-ph/0311066 (2003).
76. Shi, J. et al. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton. Nature Communications 8, 35 (2017).
77. Wahl, M. Time-Correlated Single Photon Counting. PicoQuant (2014).
78. Becker, W. Advanced time-correlated single photon counting techniques. Vol. 81 (Springer Science & Business Media, 2005).
79. Bollinger, L. M. & Thomas, G. E. Measurement of the Time Dependence of Scintillation Intensity by a Delayed‐Coincidence Method. Review of Scientific Instruments 32, 1044-1050 (1961).
80. Wu, C.-Y. Research on the plasmonic and photoluminescent properties of metal-oxide-semiconductor structures Ph.D degree thesis, National Tsing Hua University, (2011).
81. Hong, C.-C. Time-Resolved Photoluminescence Study of InGaN Nanostructures Ph.D degree thesis, National Tsing Hua University, (2008).
82. Li, C.-C. The Absence and Presence of Quantum Confined Stark Effects in Single InGaN Nanodisks with Different Disk Thicknesses Master degree thesis, National Tsing Hua University (2017).
83. Wu, S. Y. in Nanowires (ed Paola Prete) Ch. 11 (InTech, 2010).
84. Kang, B. et al. Wide Bandgap Semiconductor Nanorod and Thin Film Gas Sensors. Sensors 6, 643 (2006).
85. Levinshtein, M. E., Rumyantsev, S. L. & Shur, M. S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. (John Wiley & Sons, 2001).
86. Bernardini, F., Fiorentini, V. & Vanderbilt, D. Accurate calculation of polarization-related quantities in semiconductors. Physical Review B 63, 193201 (2001).
87. Vurgaftman, I. & Meyer, J. R. Band parameters for nitrogen-containing semiconductors. Journal of Applied Physics 94, 3675-3696 (2003).
88. Wu, J. et al. Effects of the narrow band gap on the properties of InN. Physical Review B 66, 201403 (2002).
89. Ning, X. J., Chien, F. R., Pirouz, P., Yang, J. W. & Khan, M. A. Growth defects in GaN films on sapphire: The probable origin of threading dislocations. Journal of Materials Research 11, 580-592 (1996).
90. Meng, W. J., Heremans, J. & Cheng, Y. T. Epitaxial growth of aluminum nitride on Si(111) by reactive sputtering. Applied Physics Letters 59, 2097-2099 (1991).
91. Wu, C.-L., Wang, J.-C., Chan, M.-H., Chen, T. T. & Gwo, S. Heteroepitaxy of GaN on Si(111) realized with a coincident-interface AlN/β-Si3N4(0001) double-buffer structure. Applied Physics Letters 83, 4530-4532 (2003).
92. Ahn, H., Wu, C. L., Gwo, S., Wei, C. M. & Chou, Y. C. Structure Determination of the Si3N4/Si(111)-(8×8) Surface: A Combined Study of Kikuchi Electron Holography, Scanning Tunneling Microscopy, and ab initio Calculations. Physical Review Letters 86, 2818-2821 (2001).
93. Bertness, K. A., Sanford, N. A. & Davydov, A. V. GaN Nanowires Grown by Molecular Beam Epitaxy. Selected Topics in Quantum Electronics, IEEE Journal of 17, 847-858 (2011).
94. Chen, H.-Y., Yang, Y.-C., Lin, H.-W., Chang, S.-C. & Gwo, S. Polarized photoluminescence from single GaN nanorods: Effects of optical confinement. Optics Express 16, 13465-13475 (2008).
95. Lu, Y.-J. et al. Dynamic Visualization of Axial p–n Junctions in Single Gallium Nitride Nanorods under Electrical Bias. ACS Nano 7, 7640-7647 (2013).
96. Lo, S.-T. et al. Magnetotransport in an aluminum thin film on a GaAs substrate grown by molecular beam epitaxy. Nanoscale Research Letters 6, 102 (2011).
97. Liang, C.-T. et al. Superconductivity in an Aluminum Film Grown by Molecular Beam Epitaxy. Chinese Journal of Physics 50, 638-642 (2012).
98. Cheng, F. et al. Epitaxial Growth of Atomically Smooth Aluminum on Silicon and Its Intrinsic Optical Properties. ACS Nano (2016).
99. Lin, S.-W. et al. Characterization of Single-Crystalline Aluminum Thin Film on (100) GaAs Substrate. Japanese Journal of Applied Physics 52, 045801 (2013).
100. Liu, H.-W. et al. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics. ACS Nano 9, 3875-3886 (2015).
101. Cheng, C.-W., Liao, Y.-J., Chen, L.-J. & Gwo, S. Epitaxial Growth of Atomically Smooth Aluminum Films on Sapphire and Silicon Substrates for Plasmonic Device Applications. The 8th International Conference on Surface Plasmon Photonics Meeting, P-05-10 (2017).
102. Shaklee, K. L., Nahory, R. E. & Leheny, R. F. Optical gain in semiconductors. Journal of Luminescence 7, 284-309 (1973).
103. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Physical Review 69, 681 (1946).