研究生: |
宋岳哲 |
---|---|
論文名稱: |
参聚離子型基因載體之研發及其在基因傳遞上之應用 A ternary polyion complex vector system for gene transfer based on Branched-Poly(ethylenimine) & Poly(2-ethyl-2-oxazoline)- Poly(methacrylic acid) |
指導教授: | 薛敬和 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 基因載體 、聚乙烯亞胺 、三聚離子型複合體 、陽離子型高分子 、聚(N-丙基乙烯亞胺) 、聚甲基丙烯酸 |
外文關鍵詞: | gene carrier, Polyethyleneimine, ternary polyanion, cation polymer, poly(2-ethyl-oxazoline), polymethacrylic acid |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究設計一具備複合型結構之高分子基因載體,利用具生物相容性之PEOz (poly(2-ethyl-2-oxazoline)與於中性環境下帶負電性之PMAA (polymethacrylic acid)合成雙團聯共聚物PEOz-b-PMAA,(poly (2-ethyl-2-oxazoline)-block-poly(methacrylic acid)),再進一步藉由電性吸引方式與表面帶正電性之Branched-Poly(ethylenimine)/ DNA (B-PEI/DNA)聚複合體前驅物結合,形成具有複合結構的非病毒型基因載體。親水性高分子PEOz裸露於載體外殼,以提高載體於血液循環中之安定性,降低載體本身之細胞毒性,並利用內層B-PEI之高轉染效率來達到改善基因傳輸之效率。
本研究首先分析不同重量比B-PEI/DNA之粒徑大小與界面電位,從中選取粒徑穩定同時表面具正電之微胞,再與PEOz-PMAA藉由電性相吸方式形成新型態之複合體。研究結果顯示B-PEI/DNA微胞之粒徑約在150nm左右,界面電位在30~35 mV,而加入PEOz-PMAA後之複合型微胞粒徑則在200~250nm間,且其界面電位則在0∼10mV之間,顯見PEOz可有效遮蔽B-PEI之正電性。在材料之細胞毒性測試實驗中,PEOz-PMAA相較於B-PEI具有相當低的細胞毒性,當B-PEI以濃度100μg/ml與細胞培養1天後,細胞存活率趨近於0,而同濃度下PEOz-PMAA則有80%以上存活率的表現。而在微胞之細胞毒性測試實驗中,比較B-PEI/DNA之複合體微胞與外層附加PEOz-PMAA之多層結構微胞兩者之細胞存活率,結果發現在同樣條件下,複合結構微胞可顯著的改善B-PEI/DNA微胞之細胞毒性。
此外複合體型態的觀察中,我們利用TEM影像比較B-PEI/DNA微胞與多層結構微胞,結果發現多層複合結構微胞具有相當明顯之殼核結構,並在pH 5之環境下觀測得質體之釋放。而比較各式複合型微胞之轉染效果,實驗結果顯示複合結構微胞之轉染效果相較於B-PEI/DNA雖略幅下降,然而仍具備相當優秀之轉染效率。研究並進一步藉由共軛焦顯微鏡CLSM同時觀察B-PEI/DNA與複合結構微胞在不同時間下細胞吞噬的情形,結果發現複合型微胞於3hr時開始有微量累積於細胞內,並於6hr後有明顯累積。
整體而言,利用PEOz-PMAA與B-PEI/DNA所結合之複合結構微胞可大幅提升B-PEI/DNA聚複合體之生物相容性,且表現出相當程度的轉染與細胞吞噬效率,因此為一具有相當潛力的非病毒型基因載體。
The purpose of this study was to prepare polymeric gene carriers based on PEOz-b-PMAA, (poly(2-ethyl-oxazoline)- block-poly -methacrylic acid) and Branched-Poly (ethylenimine), (B-PEI). PMAA were partially dissociation under neuteral pH and were with negative charge, so that they could attach to the positive charge surface of B-PEI/DNA polyplex. The newly formed polyplex were biocompatible by the hydrophilic segment, PEOz and could enhance the stability of the polyplex in vivo.
We prepared B-PEI/DNA polyplex by varying weight ratio of B-PEI/DNA, till the polyplex were provide with stable particle size and highly positive charge. And the B-PEI/DNA polyplex were then formed a bilayer structure polyplex with PEOz-b-PMAA. The experiment results showed that the particle size of B-PEI/DNA polyplex were about 150 nm, and the bilayer polyplex were about 200~250nm. While B-PEI/DNA polyplex carried posive surface charge with zeta potential of 30mV, the PEOz-b-PMAA could covered up the positive charge of B-PEI when bilayer structure polyplex were prepared. Data of material cytotoxicity showed that B-PEI revealed extremely toxicity to Hela cells under 100μg/ml concentration, and the cells viability approached 0, and PEOz-b-PMAA showed 80% viability under the same conceration. Then We compared the viability of B-PEI/DNA and PEOz-b-PMAA /B-PEI/DNA, and the later kept higher viability then the former .
TEM observation showed that PEOz-PMAA/B-PEI/DNA polyplex formed core-shell structure, and the polyplex in pH 5 would collapse and release plasmid.The results of transfection effects indicated that the bilayer structure reduce the efficiency slightly, and RLU/unit weight of the bilayer gene carrier were about 1/10~1/100 of B-PEI/DNA polyplex. By CLSM observation, we observed celluptake of B-PEI/DNA polyplex and bilayer structure polyplex, the result revealed that the bilayer structure polyplex started to accumulate after 3hrs incubation and accumulated a significant amount after 6hrs.
In conclusion, the polyplex formed with PEOz-PMAA covered on B-PEI/DNA could improved the cytotoxicity of B-PEI/DNA. The newly ternary polyplex presented a well transfection efficiency and cell uptake efficiency, so the ternary polyplex constitute a useful approach for further design of gene carriers.
1.A. Aigner, D. Fischer, T. Merdan, C. Brus, T. Kissel, F. Czubayko, Gene Ther. 9 (2002) 1700–1707.
2.N.R. Wall, Y. Shi, Lancet 362 (2003) 1401–1403.
3.J.Y. Sun, V. Anand-Jawa, S. Chatterjee, K.K. Wong, Gene Ther. 10 (2003) 964–976.
4.R.E. Donahue, S.W. Kessler, D. Bodine, K. McDonagh, C. Dunbar, S. Goodman, B. Agricola, E. Byrne, M. Raffeld, R. Moen, et al., J. Exp. Med. 176 (1992) 1125–1135.
5.M.E. Gore, Gene Ther. 10 (2003)
6.G. S. Manning,Q. Rev. Biophys.11, (1978) 179-246
7.Kenneth A. Marx, Dynamics and Biological Implications (1987), 137
8.Roxana Golan, Biochemistry 38(1999) 14069
9.V.A. Bloomfield, Biopolymers 44 (1997)269
10.Tomá Reschel, Journal of Controlled Release, 81 (2002) 201–217
11.T. Yamaoka,Recent Research Development in Biomaterials, Research Signpost, Kerala, India (2002), pp. 289.
12.Bally MB, Adv. Drug Deliv Rev, (1999) 38: 291-315.
13.M. A. Wolfert, P. R. Dash, O. Nazarova, D. Oupicky, L. W. Seymour, S. Smart, J. Strohalm, K. Ulbrich, Bioconjug. Chem., 10, (1999) 993.
14.M. X. Tang, F. C. Szoka, Gene Ther., 4, (1997) 823.
. Clark PR, Hersh EM., Curr Opin Mol Ther., Apr 1 (1999),158
T. Yamaoka, H. Iwata, N. Hamada, H. Ide, Y. Kimura, Nucleic Acids Symp. Series (1994), 31, 229.
15.P. Midoux, A. Legrand, J. Raimond, R. Mayer, Nucleic Acids Res. (1993), 21, 871..
16.T. Takai, H. Ohmori, Biochim. Biophys. Acta. (1991), 1048, 105.
17.O. Boussif, H. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, J. P. Behr, Proc. Natl. Acad. Sci. USA. (1995), 92, 7297.
18.I. Mortimer, P. Tam, I. MacLachlan, R. W. Graham, E. G. Saravolac, P. B. Joshi, Gene Ther. (1999), 6, 403.
19.W. Zauner, S. Brunner, M. Buschle, M. Ogris, E. Wagner, Biochim. Biophys. Acta. 1999, 1428, 57.
20.W. T. Godbey, K. K. Wu, A. G. Mikos, Proc. Natl. Acad. Sci. U. S. A. (1999), 96, 5177.
21.S. Katayose, K. Kataoka, J. Pharm. Sci. (1998), 87, 160.
A. V. Kabanov, V. A. Kabanov, Bioconjug. Chem. (1995), 6, 7.
22.P. Erbacher, A. C. Roche, M. Monsigny, P. Midoux, Exp. Cell Res. (1996), 225, 186.
23.Daniel W. Pack, David Putnam, Robert Langer, Biotechnology and Bioengineering, (2000), 67, 217
24.Marie-Christine Jones, Jean-Christophe Leroux, European Journal of Pharmaceutics and Biopharmaceutics, (1999) ,48,101-111.
25.Philippova OE, Hourdet D, Audebert R, Khokhlov AR. Macromolecules, (1999), 32,6646-51.
26.Pinkrah VT, Snowden MJ, Mitchell JC, Seidal J., Langmuir, (2003), 19,585-90.
27.S. Liu., S. P. Armes, Langmuir, (2003), 19, 4332.
28.Sang Cheon Lee, Kyung Ja Kim, Young-Keun Jeong, Jeong Ho Chang, and Jinsub Choi Macromolecules (2005), 38, 9291-9297
29.C.M. Newman, A. Lawrie, A.F. Brisken, D.C., Echocardiography 18 (2001) 339–347.
30.M.X. Tang, F.C. Szoka, Gene Ther. 4 (1997) 823–832.
P. Marschall, N. Malik, Z. Larin, Gene Ther. 6 (1999) 1634–1637.
31.P. Campeau, P. Chapdelaine, S. Seigneurin-Venin, B. Massie, J.P. Tremblay, Gene Ther. 8 (2001) 1387-1934.
32.O. Boussif, F. Lezoualc’h, M.A. Zanta, M.D. Mergny, D. Scherman, B. Demeneix, J.P. Behr, Proc. Natl. Acad. Sci. USA 92 (1995) 7297–7301.
33.Godbey W.T., Wu K.K., Mikos A.G., J. Biomed. Mater. Res. 45, (1999), 268–275,
34.Fischer D., Bieber T., Li Y., Elsasser H.P., Kissel T., Pharm. Res. (1999), 16,1273-1279,
35.Abdallah B., Hassan A., Benoist C., Goula D., Behr J.P., Demeneix B.A., Hum. Gene Ther. 7, (1996), 1947–1954
36.Bhadra, D., Bhadra, S., Jain, P., and Jain, N. K., Pharmazie 57, (2002), 5-29.
37.S. Ferrari, E. Moro, A. Pettenazzo, J.P. Behr, F. Zacchello,M. Scarpa, Gene Ther. 4 (1997), 1100–1106.
38.L. Wightman, R. Kircheis,V. Rossler, S. Carotta, R. Ruzicka, M. Kursa, E. Wagner, J. Gene Med. 3 (2001), 362–372.
39.S. Brunner, E. Furtbauer, T. Sauer, M. Kursa, E. Wagner, Mol. Ther. 5 (2002), 80–86.
40.M.A. Wolfert, P.R. Dash, O. Nazarova, D. Oupicky, L.W Seymour, S. Smart, J. Strohalm, K. Ulbrich, Bioconjug. Chem. 10 (1999), 993–1004.
41.T. Merdan, K. Kunath, D. Fischer, J. Kopecek, T. Kissel, Pharm. Res. 19 (2002), 140–146.
42.I. Fajac, J.C. Allo, E. Souil, M. Merten, C. Pichon, C. Figarella, M. Monsigny, P. Briand, P. Midoux, J. Gene Med. 2 (2000), 368–378.
43.J.M. Benns, J.S. Choi, R.I. Mahato, J.S. Park, S.W. Kim, Bioconjug. Chem. 11 (2000), 637–645.
44.P. Midoux, M. Monsigny, Bioconjug. Chem. 10 (1999), 406–411.
44.M. Koping-Hoggard, I. Tubulekas, H. Guan, K. Edwards, M. Nilsson, K.M. Varum, P. Artursson, Gene Ther. 8 (2001), 1108–1121.
46.T. Sato, T. Ishii, Y. Okahata, In vitro gene delivery mediated by chitosan, Biomaterials 22 (2001), 2075–2080.
47.P. Erbacher, S. Zou, T. Bettinger, A.M. Steffan, J.S. Remy, Pharm.Res. 15 (1998), 1332–1339.
48.M.X. Tang, C.T. Redemann, F.C. Szoka Jr., Biocon jug. Chem. 7 (1996), 703–714.
49.G. Decher, J. D. Hong, Makromol. Chem., Macromol. Symp.(1991), 46, 321.
50.G. Decher, Science (1997), 277, 1232.
51.S. S. Shiratori, M. F. Rubner, Macromolecules 2000, 33,4213.
52.R. Steitz, V. Leiner, R. Siebrecht, R. V. Klitzing, Colloids Surf. B (2000), 163, 63.
53.D. Yoo, S. S. Shiratori, M. F. Rubner, Macromolecules, (1998), 31, 4309.
54.Vladimir S. Trubetskoy*, Aaron Loomis, James E. Hagstrom, Vladimir G. Budker1 and Jon A. Wolff1 Nucleic Acids Research, (1999), Vol. 27, No. 15 3090–3095
55.Kefeng Ren, Jian Ji, Jiacong Shen Macromol. Rapid Commun. (2005), 26,1633–1638
56.YOSHIYUKIKOYAMA, J. Biomater. Sci. Polymer Edn, (2003), Vol. 14, No. 6, pp. 515–531
57.J. L. Thomas and D. A. Tirrell, J. Control. Rel. (2000). 67, 203
58.Vijay A. Sethuraman, Kun Na, and You Han Bae, Biomacromolecules (2006), 7, 64-70
59.Engin, K.; Leeper, D. B.; Cater, J. R.; Thistlethwaite, A. J.; Tupchong, L.; McFarlane, J. D. Int. J. Hyperthermia, (1995), 11, 211-216.
60.I. C. Kwon, Y. H. Bae and S. W. Kim, Nature, (1991), 354, 291.
61.RICHARD HOOGENBOOM, MARTIN W. M. FIJTEN, ULRICH S. SCHUBERT Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 42, (2004), 1830–1840
62.MARJO MÄNNISTÖ, Pharmaceutical Sciences, (2007)
H. E. HUXLEY, Ph.D., and G. ZUBAY, Ph.D., The Journal of 63.Biophysical and Biochemical Cytology Vol.11, (1961)