研究生: |
蔡卓勳 Tsai, Cho-Chuan |
---|---|
論文名稱: |
電磁式二維CMOS微機電微掃描鏡之慢軸軌跡控制 Slow-Axis Control for an Electromagnetic CMOS MEMS Scanning Micromirror |
指導教授: |
盧向成
Lu, Shiang-Cheng |
口試委員: |
劉承賢
Liu, Cheng-Hsien 傅建中 Fu, Chien-Chung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 電磁式 、微掃描鏡 、壓阻感測 、閉迴路控制系統 |
外文關鍵詞: | Electromagnetic, Micromirror, Piezoresistive Sensing, Closed-loop control system |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文期望設計一個用於電磁式驅動、壓阻式感測微掃描鏡的慢軸軌跡控制迴圈。為了得到其運動時的訊號,我們在其轉軸上沉積了使用多晶矽製成的壓阻感測器。
在本研究中使用了台積電2P4M 0.35μm CMOS製程,設計了整合了機械結構、感測電路的微掃描鏡晶片,晶片面積為4× 3.8 mm2。本研究期望設計一個適用於電磁式驅動、壓阻式感測微掃描鏡的慢軸軌跡控制系統,目的是使用負回授閉迴路系統建立一個穩健的控制器,確保受控系統在系統參數不能準確確定之下仍保有穩定性。在設計控制器之前必須先了解受控系統的特性,並建立數學模型,因此本論文先經由CoventorWare有限元素分析軟體模擬結構模態的振頻以及彈簧常數,藉由從模擬和量測所得到機械扭轉的二階系統參數,組成一個完整的受控體模型,做為增益補償以及控制器設計的參考,並經由Simulink去確認設計出的電路在暫態分析的穩定性,最後將電路實現。
經由測量後,本研究所設計的電磁式驅動壓阻式感測雙軸微掃描鏡有著解析度規格 =2689.2deg mm kHz達到HD720(1280×720)的標準,並且有著閉迴路控制系統,其穩態誤差為4.66%。在閉迴路步階響應中擁有過衝31%、安定時間330μs以及上升時間82.9μs。
An electromagnetic scanning micromirror driven by Lorentz force is studied in this thesis for application in a laser beam scanning projector. In order to produce repetitive scanning signals during the motion, polycrystalline silicon deposited on the torsion axis is used to provide piezoresistive sensing of the motion.
The integrated chip containing the mechanical structure and sensing circuit, is implemented by using the TSMC 2P4M 0.35μm CMOS process. The chip area is 4× 3.8 mm2. This thesis proposed to design a slow-axis trajectory control system for an piezoresistively transduced scanning micromirror to achieve robust performance. To design a controller, we first establish the mathematical model of the plant which includes the mode shape frequency and the spring constant by CoventorWare. By applying the second plant model parameters derived from measurement and simulation, the complete plant model can be established. Furthermore, we can derive the Bode diagram based on this model, as a design reference of the controller and the compensation of gain. Finally, we do the time domain analysis of the control system by using Simulink to confirm system stability, followed by implementation of the control circuits.
By the measurement , this bi-axial electromagnetically-driven piezoresistively sensed scanning mirror achieves HD720(1280×720) with the parameter =2689.2deg mm kHz and have a closed loop control system with a steady-state error 4.66%. The closed-loop step response measurement results show that the overshoot is 31%, rise time is 82.9μs and settling time is 330μs.
Keyword:Electromagnetic、Micromirror、Piezoresistive Sensing、Closed-loop control system
第6章 參考文獻
[1] J.M. Bustillo, R.T. Howe, and R.S. Muller, "Surface micromachining for microelectromechanical systems," Proc. IEEE Proceedings, vol. 86, pp. 1552-1574, August,1998.
[2] K. E. Petersen, "Silicon torsional scanning mirror," IBM J. Res. Dev., vol. 24, no. 5, pp. 631-637, September. 1980.
[3] C. Liao and J. Tsai, "The evolution of MEMS displays," IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1057–1065, April. 2009.
[4] P. R. Patterson, D. Hah, M. Fujino, W. Piyawattanametha, and M. C. Wu, "Scanning micromirrors: An overview," Proc. SPIE, vol. 5604, pp. 195–207, October. 2004.
[5] S. T. S. Holmstrom, U. Baran, H. Urey, "MEMS laser scanners: A review," J. Microelectromech. Syst., vol. 23, no. 2, pp. 259-275, April. 2014.
[6] T. Bourouina, H. Fujita, G. Reyne, and M. E. Motamedi, "Optical scanning," in Micro-Opto-Electro-Mechanical Systems, M. E. Motamedi, Ed. Bellingham, WA, USA: SPIE, pp. 323–367, 2005.
[7] T. Bourouina, K. Y. Lim ,B Wilson, and A. A. Goldenberg, "A low-voltage electrostatically actuated MEMS scanner for in vivo biomedical imaging," Peoceeding of Microtechnologies in Medicine&Biology ," pp. 205-207, May,2002.
[8] H. Toshiyoshi, W. Piyawattanametha,C. T. Chan,and M. C. Wu, "Linerization of electrostatically actuated surface micromachined 2-D optical scanner" Journal of Microelectromechanical Systems, vol. 10, NO. 2, pp. 205-214, June. 2001.
[9] J. L. A. Yeh,H. Jiang, and N. C. Tien, "Integrated polysilicon and DRIE bulk silicon micronachining for an electrostatic torsional actuator, " Journal of Microelectromechanical Systems, vol. 8, NO. 2, pp. 456-465, December. 1999.
[10] D. Hah , P. R. Patterson ,H. D.Nguyen,H. Toshiyoshi, and M. C. Wu, "Theory and Experiments of angular vertical comb-drive actuators for scanning micromirrors, "IEEE Journal of selected Topics in Quantum Electronics, vol. 8, NO. 3, pp. 505-513, May/June. 2014.
[11] R. Schroedter, K. Janschek, and T. Sandner, "Jerk and Current limited flatness-based open loop control of foveation scanning electrostatic micromirrors, "The International Federation of Automatic Control 2014:THE 19TH IFAC World Congress,pp. 2685-2690,Augest. 2014.
[12] W. C. Tang, T. C. H. Nguyen, M. W. Judy, and R. T. Howe, "Electrostatic-comb drive of lateral polysilicon resonators, " Sens. Actuators A, Phys., vol. 21, no. 1, pp. 328–331, February. 1990.
[13] A. Selvakumar, K. Najafi, W. H. Juan, and S. Pang, "Vertical comb array microactuators, " in Proc. IEEE MEMS, Amsterdam, The Netherlands, pp. 43–48, January, 1995.
[14] H. Schenk, P. Durr, D. Kunze, H. Laher, and H. Kiick, "An electrostatically excited 2D-micro-scanning-mirror with an in-plane configuration of the driving electrodes, " IEEE MEMS Pro., vol. 13, pp. 473-478, 2000.
[15] K. Uchino, "Piezoelectric actuators 2006," J. Electroceram., vol. 20, pp. 301–311, July. 2008.
[16] S. Desai, A. Netravali, and M. Thompson, "Carbon fibers as a novel material for high-performance microelectromechanical systems (MEMS)," J. Micromech. Microeng., vol. 16, no. 7, pp. 1403–1407, June. 2006.
[17] Y. Hishinuma, Y. Li, J. Birkmeyer, T. Fujii, T. Naono, and T. Arakawa, "High performance sputtered PZT film for MEMS applications," in Proc. NSTI Nanotechnol. Conf., vol. 2. Santa Clara, CA, USA, pp. 137–140, 2012.
[18] M. Tani, M. Akamatsu, Y. Yasuda, H. Fujita, and H. Toshiyoshi, "A combination of fast resonant mode and slow static deflection of SOI-PZT actuators for MEMS image projection display," in Proc. IEEE/LEOS Int. Conf. Opt. MEMS Appl. Conf., Big Sky, MT, USA, pp. 25–26, August. 2006.
[19] N. Asada, H. Matsuki, K. Minami, M. Esashi , "Silicon micromachined two-dimensional galvano optical scanner," IEEE Transactions on Magnetics, vol. 30, pp. 4647-4649, November. 1994.
[20] A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague , "Two axis electromagnetic microscanner for high resolution displays," Journal of Microelectromechanical Systems, Vol. 15, no. 4, August. 2006.
[21] C. Ji, S.H. Ahn, K.C. Song, H.-K. Yoon, M. Choi ,S.C. Kim, and J. U. Bu, "Dual-axis electromagnetic scanning micromirror," MEMS, Istanbul,Turkey, 22-26, January. 2006.
[22] C. Drabe, D. Kallweit, A. Dreyhaupt, J. Grahmann, H. Schenk, W. Davis, " Bi-resonant scanning mirror with piezo-resistive position sensor for WVGA laser projection systems,” Proc. of SPIE, vol. 825209, 2012.
[23] C. L. Hung, Y. H. Lai, T. W. Lin, S. G. Fu, S. C. Lu, " An electrostatically driven 2D micro-scanning mirror with capacitive sensing for projection display," Sensors and Actuators A: Physical, Vol. 222, 2015.
[24] Heng Lin , Ta-Wei Li , Andrew C.-L. Hung and Michael S.-C. Lu, "A Bi-axial capacitive scanning mirror with closed-loop control,"IEEE Micro Electro Mechanical Systems, 2018
[25] Z. H. Li, Y. T. Lin and M. S.-C. Lu, “An electromagnetically-driven piezoresistively sensed CMOS MEMS scanning mirror for projection display,” Proc. Eurosensors, Paris, France, Sept. 3-6, 2017
[26] T. Tuma, J. Lygeros, V Kartik, A. Sebastian, and A. Pantazi, "High-speed multi resolution scanning probe microscopy based on Lissajous scan , trajectories, " 6th IFAC Symposium on Mechatronic Systems, 2013.
[27] U. Hofmann, M. Oldsen, H.J. Quenzer, J. Janes, M. Heller, M. Weiss, G Fakas
, L. Ratzmann, E. Marchetti, F. D’Ascoli, M. Melani, L. Bacciarelli, E. Volpi, F. Battini, L. Mostardini, F. Sechi, M. De Marinis, and B. Wagner, "Wafer-level vacuum packaged resonant micro-scanning mirrors for compact laser projection displays," Proc. of SPIE , MOEMS and Miniaturized Systems VII ,vol. 6887, 2008.
[28] G. B. Airy, "On the diffraction of an object-glass with circular aperture," Transactions of the Cambridge Philosophical Society, Vol. 5, pp. 283-291, 1835.
[29] H. Urey, D. W. Wine, and T. D. Osborn, "Optical performance requirements for MEMS-scanner based microdisplays," Proc. SPIE, vol. 4178, pp. 176-185, 2000.
[30] H. Urey, "High performance resonant MEMS scanners for display and imaging applications," in Optomechatronic micro/nano components, devices, and systems conference, Proc. SPIE, Vol. 5604, Philadelphia, Pennsylvania, October. 2004.
[31] H. Urey, "Torsional MEMS scanner design for high-resolution display systems," in Optical Scanning II, Proc. SPIE Vol. 4773, pp. 27-37 Seattle, Washington, July. 2002.
[32] ] J. W. Cho, Y. H. Park, Y. C. Ko, B. L. Lee, S. J. Kang, S. W. Chung, et al., "Electrostatic 1D microscanner with vertical combs for HD resolution display," ” Proc. SPIE, vol. 6466, pp. 64660B-1–64660B-12, Jan. 2007.
[33] H. Urey, S. Holmstrom, U. Baran, K. Aksit, M. K. Hedili, and O. Eldes, “MEMS scanners and emerging 3D and interactive augmented reality display applications,” in Proc. 17th Int. Conf. SolidState Sensors, Actuat. Microsyst. Transducers Eurosensors, Barcelona, Spain, Jun. 2013, pp. 2485–2488.