簡易檢索 / 詳目顯示

研究生: 謝珮琳
Pai-lin Hsieh
論文名稱: 一般化柏拉圖分配其L-moments的估計與抽樣分配
ESTIMATION AND SAMPLING DISTRIBUTIONS OF L-MOMENTS FOR GENERALIZED PARETO DISTRIBUTION
指導教授: 唐 正
Jen Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 51
中文關鍵詞: Edgeworth展開式極端值理論一般化柏拉圖分配L-moments機率加權動差
外文關鍵詞: Edgeworth expansion, Extreme Value Theory, Generalized Pareto Distribution, L-moments, Probability-weighted Moments
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以Edgeworth展開式修正來自一般化柏拉圖分配其L-moments統計量的漸近分配


    VaR is an important risk management tool in finance and economics, which focuses on tail estimation, especially when financial loss follows a heavy-tailed distribution. It is recently found that Generalized Pareto Distributions (GPDs) from Extreme Value Theory (EVT) perform better than certain existing models, e.g., the lognormal distribution, in describing excessive losses. L-moments, expectations of certain linear combinations of order statistics, can describe a probability distribution well like the conventional moments and are more robust to outliers, because their power measurements are also in cumulative distribution functions.
    In this paper, we obtain certain properties of the unbiased estimators of the L-moments, namely the UMVU property. We then obtain Edgeworth expansions for the sampling distributions of L-moments when sampling from a generalized Pareto distribution. These Edgeworth approximations are expected to give better approximations than the CLT’s normal approximation, because these Edgeworth approximations add more information about loss severity to describing the distribution through some adjustments of skewness and kurtosis. We will also show how the scale and shape parameters of a GPD may affect the fitting performance of the derived Edgeworth approximation of L-moments, by some numerical analyses. Finally we will illustrate the method using real data from an insurance company.

    1.Introduction ------------------------------------1 2.Extreme Value Theory ----------------------------4 2.1The Generalized Extreme Value Distributions ---4 2.2 The Generalized Pareto Distribution ----------7 3.L-moments and Probability-weighted Moments Estimation -------------------------------------10 3.1 L-moments -----------------------------------10 3.2 Probability-weighted Moments and Their Unbiased Estimators -------------------------11 3.3 Asymptotic Distributions of Sample PWMs -----13 4.Estimations and Edgeworth Expansions of Sampling Distributions of L-moments ---------------------14 4.1 L-moments and UMVUEs-------------------------14 4.2 Asymptotic Sampling Distributions of Sample L-moments -----------------------------------18 4.3 Edgeworth Approximations of the Sampling Distributions of L-moments ------------------19 5.Numerical Illustration -------------------------27 6.Data Analysis ----------------------------------35 7.Conclusions ------------------------------------39 References ---------------------------------------40 Appendix A ---------------------------------------43 Appendix B ---------------------------------------45 Appendix C ---------------------------------------50

    Beirlant, J. & Teugels, J. (1992). “Modelling Large Claims in Non-life Insurance,” Insurance: Mathematics and Economics, 11, 17-29.
    Blom, G. (1980). “Extrapolation of Linear Estimates to Larger Sample Sizes,” J. Am. Statist., 4, 1139-1158.
    Bradley, B. O. and Taqqu, M. S. (2002). Financial Risk and Heavy Tails, Boston University Press, Boston, MA.
    Chan, L. K. (1967). “On A Characterization Of Distributions By Expected Values Of Extreme Order Statistics,” Am. Math. Mathly, 74, 950-951.
    Chernoff, H., Gastwirth, J. L. and Johns, M. V. (1967).”Asymptotic Distribution Of Linear Combinations Of Functions Of Order Statistics With Applications To Estimation,” Ann. Math. Statist., 38, 52-72.
    Duffie, D. and Pan, J. (1997). “An Overview of Value at Risk,” The Journal of Derivatives, Spring, 7-49.
    Embrechts, P. & Kluppelberg, C. (1993). “Some Aspects of Insurance Mathematics,” Theory of Probability and its Applications, 38, 262-295.
    Fisher, R. A. and Tippett, L. H. C. (1928). “Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample,” Proceedings Cambridge Philosophical Society, 24, 180-190.
    Greenwood, J.A., Landwehr J.M., Matalas, N.C., and Wallis, J.R. (1979). “Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form,” Water Resources Research, 15, 1049-1054.
    Jenkinson, A. F. (1955). “The Frequency Distribution Of The Annual Maximum (Or Minimum) Values Of Meteorological Elements,” Quarterly Journal of the Royal Meteorological Scoiety, 87, 158-171.
    Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer-Verlag, New York.
    Helmers, R. (1982). “Edgeworth Expansions for Linear Combinations of Order Statistics,” Math. Centre Tracts 105. Math. Centrum, Amsterdam.
    Hoeffding W. (1948). ”A Non-Parametric Test Of Independence,” Ann. Statist, 19, 546–57.
    Hosking, J.R.M. and Wallis, J.R.and Wood, E. F.(1985). “Estimation Of The Generalized Extreme-Value Distribution By The Method Of Probability-Weighted Moments,” Technometrics, 27, 251-261.
    Hosking, J.R.M. and Wallis, J.R. (1987). “Parameter And Quantile Estimation For The Generalized Pareto Distribution,” Technometrics, 29 ,339-349.
    Hosking, J.R.M. and Wallis, J.R. (1988). “The Effect Of Intersite Dependence On Regional Flood Frequency Analysis,” Water Resources Research, 24, 588-600.
    Hosking, J.R.M. (1990). “L-Moments: Analysis And Estimation Of Distributions Using Linear Combinations Of Order Statistics,” Journal of the Royal Statistical Society, Series B, 52, 105-124.
    Hosking, J.R.M. and Wallis, J.R. (1993). “Some Statistics Useful in Regional Frequency Analysis,” Water Resources Research, 29, 271- 281.
    Konheim, A. G. (1971). “A Note on Order Statistics,” Am. Math. Mthly, 78, 524.
    Landwehr, J.M. , Matalas, N.C. and Wallis, J.R. (1979). “Probability Weighted Moments Compared With Some Traditional Techniques In Estimating Gumbel Parameters And Quantiles,” Water Resources Research, 15, 1055-1064.
    Lehmann, E. L. and Casella G. (1998). Theory of Point Estimation. Springer-Verlag.
    Pickands, J. III (1975). “Statistical Inference Using Extreme Order Statistics,” Ann. Statist, 3 ,119-131.
    Randles, R. H. and Wolfe, D. A. (1979). Introduction to the Theory of Nonparametric Statistics, New York: Wiley.
    Reiss, R-D. and Thomas, M. (2001). Statistical Analysis of Extreme Values: with Applications to Insurance, Finance, Hydrology and Other Fields. 2nd Edition. Birkhauser.
    Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. John Wiley and Sons, New York.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE