研究生: |
黃碧玲 |
---|---|
論文名稱: |
化工批次製程線上穩態判別及啟動階段之故障監測 Online steady state identification and startup monitoring for chemical batch process |
指導教授: | 姚遠 |
口試委員: |
汪上曉
陳榮輝 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 穩態判別 、故障監測 、系綜經驗模態分解法 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今工業製程中,批次製程佔有重要地位,批次製程依生產過程可分為兩個階段:啟動階段與穩態階段,在啟動階段,許多製程變數與儀器設備皆處於變動狀態,這將使在啟動階段操作下生產的批次不穩定,導致最終產品品質不符合要求,需等待製程進入穩態階段後,才能生產出良好且穩定的產品。因此批次製程中,穩態判別是一項相當重要的工作。除了利用穩態判別判斷製程階段外,在啟動過程當中,良好的設備與程序控制將能有效使製程盡快進入穩定狀態,因此,對於啟動階段的故障監測也是批次製程中需要關注的重點。
製程中的批次訊號包含了三部分訊息:高頻的噪音與錯誤訊號、批次內部週期性訊號及批次與批次間的長期變動趨勢。在穩態判別方面,由於穩態階段的資訊包主要含於批次與批次之間的長期變動趨勢內部,而目前的穩態判別多以批次的整體數據為計算基礎,並非使用批次間的長期變動趨勢,因此,若發生訊號較大的錯誤量測點,使用目前的方法可能會使穩態判別判斷錯誤,將進入穩態階段的批次判斷為非穩態,造成操作人員錯誤判斷,並使製程的生產效率降低。
本研究使用系綜經驗模態分解法(EEMD)分解批次製程數據,由於EEMD的分解特性,可將數據自高頻到低頻逐一分解成多個本質模態函數(IMF),結合瞬時頻率及週期的計算,我們可以有效地挑取出代表批次與批次間低頻變化趨勢的本質模態函數,並能將批次訊號中的批次間長期變化趨勢與批次內部週期性訊號及噪音有效分離,利用批次間的長期變化趨勢與去除長期變化趨勢後的訊號,即可運用不同的統計方法來進行數據分析。
在批次製程的穩態判別方面,將系綜經驗模態分解法結合移動窗口,使批次數據可以線上分解,以增加製程效率。利用分解後的批次間長期變化趨勢,結合穩態判別方法(SSID)比較變異數與共變異數矩陣,可有效判別批次製程的啟動階段與穩態階段。
而在啟動階段的故障監測方面,由於原始批次數據內部存在長期變動趨勢,使數據本身不適合直接使用MPCA對數據進行建模及故障監測。因此,本文利用系綜經驗模態分解法將批次數據去除長期的變動趨勢,將剩下的平穩週期性訊號與噪音部分進行後續分析,由於此分解後的訊號可以有效利用MPCA對數據進行建模與故障監測,因此改善了原本的缺點。此外,本研究將啟動過程的批次數據分成兩方面監測:PhaseⅠ¬及PhaseⅡ。由於我們並無法確定在啟動階段生產的批次是否為正常,因此,PhaseⅠ¬的主要目的為利用歷史資料來建立管制線,藉由剔除超出管制線的批次後,重新建立管制線,經由不斷的剔除超線批次與建立管制線,最終將可以得到屬於正常操作的批次,藉由PhaseⅠ的建模,即使批次製程尚未進入穩態階段,也能對製程進行有效的監測。而PhaseⅡ主要目的為故障監測,由於在PhaseⅠ的監測中,已建立好正常操作下的管制線,所以在PhaseⅡ中,只需利用PhaseⅠ¬挑選出的正常批次建立管制線,並將需要監測的數據帶入,就能有效地對製程進行故障監測。
本文使用了兩批不同的工業批次製程的射出成型真實數據分別進行穩態判別與故障監測。另外,在穩態判別方面,同時也利用模擬噪聲數據來證明本文方法的有效性。
[1] Jiang, T., Chen, B., He, X. and Stuart, P., “Application of steady-state detection method based on wavelet transform”, Computers and Chemical Engineering, Vol. 27, 2003, pp. 569-578.
[2] Aguado, D., Ferrer, A., Seco, A. and Ferrer, J., “Using unfold-PCA for batch-to-batch start-up process understanding and steady-state identification in a sequencing batch reactor”, J. Chemom, Vol. 22, 2008, pp. 81–90.
[3] Nomikos, P., MacGregor, J., “Monitoring batch processes using multiway principal component analysis”, AIChE Journal, Vol. 40, 1994, pp. 1361-1375.
[4] Yao, Y., Zhao, C. and Gao, F., “Batch-to-Batch steady state identification based on variable correlation and Mahalanobis distance”, Industrial Engineering Chemistry Research, Vol. 48, No. 24, 2009, pp. 11060-11070.
[5] Mardia, K., Kent, J., Bibby, J., MultiVariate Analysis; Academic Press: New York, 1979.
[6] Von Neumann, J., “Distribution of the ratio of the mean square successive difference to the variance”, Ann. Math. Stat., 1941, pp. 367–395.
[7] Szela, J. T., and Rhinehart, R. R., “A virtual employee to trigger experimental conditions”, Journal of Process Analytical Chemistry, Vol. 8, No. 1, 2003.
[8] Huang, N. E. and Wu, Z., “Ensemble empirical mode decomposition: a noise assisted data analysis method”, Center for Ocean-Land-Atmosphere Studies, Technical Report series, Vol. 193, No. 173. 2005.
[9] Li-aung Y., “Realtime empirical mode decomposition for intravascular bubble detection”, School of Engineering and Physical Sciences, 2010.
[10] Huang NE., “Computing frequency by using generalized zero-crossing applied to intrinsic mode functions”, US Patent 6,990,436 B1, 2006.
[11] J. Von Neumann, “Distribution of the ratio of the mean square successive difference to the variance”, The Annals of Mathematical Statistics, 1941, pp. 367-395.
[12] Cao, S., and Rhinehart, R. R., “An efficient method for on-line identification of steady-state”, Journal of Process Control, Vol. 5, No. 6, 1995, pp. 363-374.
[13] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of Royal Society London. A, No. 454, 1998, pp. 903-995.
[14] Bochner S., Chandrasekharan K. , “Fourier Transforms, Princeton University Press”,1949.
[15] Aradhye, H.B., Bakshi, B.R., Strauss, R.A., Davis, J.F., “Multiscale SPC using wavelets—theoretical analysis and properties”,A.I.Ch.E. Journal 49, 2003, pp. 939-958.
[16] Von Neumann, J., Kent, R., Bellinson, H. and Hart, B., “The mean square successive difference”, Ann. Math. Stat., 1941, pp. 153-162.
[17] Rhinehart, R. R., “Automated steady and transient state identification in noisy processes”, American Control Conference, 2013, pp. 4477-4493.
[18] Hald, A., Statistical theory with engineering applications, New York: Wiley, 1952.
[19] Kramer, C. Y. and Jensen, D. R., “Fundamentals of multivariate analysis, Part II. inference about two treatments”, Journal of Quality Technology, Vol. 1, 1969, pp. 189-204.
[20] Jackson, J.E., “A User’s Guide to Principal Components”, Wiley, New York, NY., 1991.
[21] Nomikos, P. and MacGregor, J. F., “Monitoring batch processes using multiway principal component analysis”, AIChE J, Vol. 40, 1994, pp. 1361–1375.
[22] Shewhart. W. A., “Economic control of quality of manufactured product”, D. Van Nostrand Company, 1931, pp. 501
[23] Gallagher, N.B., Wise, B.M., Butler, S.W., White, D.D. and Barna, G.G., “Development and benchmarking of multivariate of statistical process control tools for a semiconductor etch process: improving robustness through model updating”, Adechem, 1997.
[24] Montgomery, “ Introduction to statistical quality control sixth edition”, Asia, 2009.
[25] Crow, E.; Davis, F., “Statistics Manual”, Dover Publications, Mineola, NY., 1960.