研究生: |
鄭有成 Cheng, You Cheng |
---|---|
論文名稱: |
複合材料風機葉片結構之有限單元應力分析 Finite Element Stress Analysis of Composite Wind Blade Structure |
指導教授: |
葉孟考
Yeh, Meng Kao |
口試委員: |
蔣長榮
葉銘泉 葉孟考 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 風機葉片 、流固耦合分析 、碳纖維布/環氧樹脂 |
外文關鍵詞: | Wind blades, FSI, Carbon fiber sheet/epoxy |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
風機葉片為複合材料結構,主要為兩片強硬的外層,搭配加強肋結構結合而成。本研究以鋁合金作為3kW小型風機葉片之材料,以有限單元軟體分析風機空心葉片幾何外型,並加入一肋與三肋結構,另外改變葉片遠端翼型與近端翼型的面積比例,以Whiffle-tree方法來模擬風力負載施於風機葉片上,探討在不同之遠端與近端翼型面積比例之下,加強肋數目對於應力與最大位移之影響。結果顯示,使最大von Mises應力下降,增加加強肋數目之效果比增加遠端與近端翼型面積比例顯著;使最大y方向位移下降,增加遠端與近端翼型面積比例比增加加強肋數目顯著。
另外針對大型NREL 5MW葉片進行單向流固耦合分析,模擬風速於NREL葉片之風壓分布,並進行碳纖維布/環氧樹脂相關材料常數試驗,探討改變支撐結構與材料常數對於NREL葉片之應力與位移之影響。結果顯示,NREL葉片於攻角-90°時所承受之應力及位移量為最大,於攻角0°時所承受之應力及位移量為最小;使用箱型樑支撐結構可有效提升NREL葉片結構之剛性;碳纖維布/環氧樹脂與玻璃纖維/乙烯樹脂兩者材料在應力與位移分析結果相差不大,但碳纖維布/環氧樹脂密度低,可大幅減少葉片重量。
Wind blades are composite structure, which is mainly composed of two tough outer facesheets and with reinforcing spar structure in it. In this study, wind blades without spar, with one or three spars were analyzed using the finite element code ANSYS. The material of two facesheets and the reinforcing spar of 3kW wind blade are assumed to be aluminum alloy. The ratio of far and near airfoil was varied. The Whiffle-tree loading was adopted to simulate the wind load on the blade. The stress distribution and maximum deflection of the 3kW wind blade were evaluated. The results show that to reduce the maximum von Mises stress on the 3kW wind blade, increasing the number of reinforcing spar is better than increasing the ratio of far and near airfoil. In addition, to reduce the maximum deflection in the vertical direction, increasing the ratio of far and near airfoil is better than increasing the number of reinforcing spar.
For the large-scale wind blade, the One-way FSI was used to calculate the pressure distribution on the NREL 5MW wind blade. The carbon fiber sheet/epoxy experiment was conducted for the material constants. The stress distribution and maximum deflection of the 5MW wind blade were evaluated under different structural support and material constants conditions. The results show that the NREL wind blade has the maxium stress and deflection at the attack angle of -90°, while the NREL wind blade has the minium stress and deflection at the attack angle of 0°, and the rigidity of NREL wind blade is enhanced by spar-cap. The results in both stress and deflection analysis are similar in Carbon fiber sheet/epoxy and glass fiber/vinyl epoxy, while the Carbon fiber sheet/epoxy has the lower density, which can significantly reduce the weight of the NREL blade.
1. 熊治民,伏和中,黃聰文,陳芙靜,台灣風力發電設備產業發展策略,科技發展政策報導,第26~28頁,2006。
2. 牛山泉,風力能源與風力發電系統設計,科技圖書股份有限公司,第201~203頁,2011。
3. I. M. Daniel and J. Abot, “Fabrication, Testing and Analysis of Composite Sandwich Beam,” Composite Science and Technology, Vol. 60, pp. 2455-2463, 2000.
4. J. Kim and S. R. Swanson, “Design of Sandwich Structures for Concentrated Loading, Composite Structure,” Vol. 52, pp. 365-373, 2001.
5. C. A. Steevens and N. A. Flect, “Material Selection in Sandwich Beam Construction, “ Script Materialia, Vol. 50, pp. 1335-1339, 2004.
6. N. Pokharel and M. Mahendran, “Experimental Investigation and Design of Sandwich Panels Subjects to Local Buckling Effects,” Journal of Constructional Steel Research, Vol. 59, pp. 1533-1152, 2003.
7. F. Mujika, “On the Difference Between Flexural Moduli Obtained by Three-Point and Four-Point Bending Tests,” Polymer Testing, Vol. 25, pp. 214-220, 2006.
8. T. Hobbiebrinken, M. Hojo, T. Adachi, C. D. Jong, and B.Fiedler, “Evaluation of Interfacial Strength in CF/Epoxies Using FEM and In-Situ Experiments,” Composites:Part A, Vol. 37, pp. 2248-2256, 2006.
9. U. K. Vaidya, S. Pillay, S. Bartus, C. A. Ulven, D. T. Grow and B. Mathew, “Impact and Post-Impact Vibration Response of Protective Metal Form Composite Sandwich Plates,” Materials Science and Engineering A, Vol. 428, pp. 59-66, 2006.
10. J. H. Yim, S. Y. Cho, Y. J. Seo and B. Z. Jang, “A study on material of 0° laminated composites sandwich cantilever beams with a viscoelastic layer,” Composites Structures, Vol. 60, pp. 367-374, 2003.
11. A. S. Hadi and N. Ashton, “Measurement and theoretical modeling of the damping properties of a uni-directional glass/epoxy composites,” Composite Structures, Vol. 34, pp. 381-385, 1996.
12. C. Kyriazoglou and F. J. Guild, “Finite element prediction of damping of composites CFRP and GFRP laminates – a hybrid formulation – vibration damping experiments and Rayleigh damping,” Composites Science and Technology, Vol. 66, pp. 487-498, 2006.
13. M. Styles, P. Compston and S. Kalyanasundaram, “The Effect of Core Thickness on The Flexural Behaviour of Aluminium Foam Sandwich Structures,” Composites Stuctures, Vol. 80, pp. 532-538, 2007.
14. H. L. Fan, F. H. Meng and W. Yang, ”Sandwich Panels with Kagome Lattice Cores Reinforced by Carbon Fibers,” Composites Structures, Vol. 81, pp. 533-539, 2007.
15. X. Dang, X. Wang, M. Wei and J. Xiao,”Finite Element Analysis of X-cor Sandwich’s Compressive Modulus,” International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT), pp. 2532-2535, 2011.
16. J. Hohe and W. Becker, “Assessment of the Delamination Hazard of the Core Face Sheet Bond in Structural Sandwich Panels,” International Journal of Fracture, Vol. 109, pp. 413-432, 2001.
17. Y. B. Cho and R. C. Averill, “First-order Zig-zag Sublamination Plate Theory and Finite Element Model for Laminated Composite and Sandwich Panels,” Composites Structures, Vol. 50, pp. 1-15, 2000.
18. 王文毅,複合三明治結構膠黏層的黏彈性質分析,國立中正大學機械工程研究所碩士論文,2002。
19. M. H. Kao and M. K. Yeh, “Delamination Plates under Pure Bending and Local Buckling,” Proceedings of the 18th National Conference on Theoretical and Applied Mechanics, Hsinchu, Taiwan, ROC, Vol. 3, pp. 89-96, 1994.
20. 蕭銘志,三明治板的挫曲分析-五層理論法,國立中正大學機械工程研究所碩士論文,2005。
21. V. Vadakke and L. A. Carlsson, “Experimental Investigation of Compression Failure of Sandwich Specimens with Facecore Debond,” Composites:Part B, Vol. 35, pp. 583-590, 2004.
22. H. Y. Kim and W. Hwang, “Effect of Debonding on Frequencies and Frequency Response Functions of Honeycomb Sandwich,” Composites Structures, Vol. 55, pp. 51-62, 2002.
23. A. L. Mouritz and R. S. Thomson, “Compression, Flexure and Shear Properties of A Sandwich Composite Containing Defects,” Composites Structures, Vol. 44, pp, 263-278, 1999.
24. H. Mahfuz, S. Islam, M. Saha, L. Carlsson and S. Jeelani, “Buckling of Sandwich Composites Effects of Core-Skin Debonding and Core Density,” Applied Composites Materials, Vol. 12, pp. 73-91, 2005.
25. V. P. Veedu and L. A. Carlsson, “Finite-element Buckling Analysis of Sandwich Columns Containing a Face/Core Debond,” Composite Structures, Vol. 69, pp. 143-148, 2005.
26. B. O. Baba and S. Thoppul, “Experimental Evaluation of The Vibration Behavior of Flat and Curved Sandwich Composite Beams with Face/Core Debond,” Composite Structures, Vol. 91, pp. 110-119, 2009.
27. Y. Frostig and O. T. Thomsen, “Non-linear Behavior of Delaminated Unidirectional Sandwich Panels with Partial Contact and a Transversely Flexible Core,” International Journal of Non-Linear Mechanics, Vol. 40, pp. 633-651, 2005.
28. W. J. Rankine, “On the mechanical principles of the action of ship propellers,” Trans. Inst., Naval Arch. 6, pp. 13-39, 1865.
29. A. Betz, “Das Maxium der theoretisch möglichen Ausnützung des Windes durch Windmotoren,” Zeitschrift für das gesamte Turbinenwesen, Vol. 26, pp. 307-309, 1920.
30. H. Glauert, “Airplane Propellers Aerodynamics Theory,” Division L, Dover Publication, Inc., New York, Vol. 4, 1943.
31. R. E. Wilson and P. B. S. Lissaman, “Applied Aerodynamics of Wind Power Machines,” Oregon State University, Report NSF/RA/N74113, 1974.
32. R. Lanzafame and M. Messina, “Fluid dynamics wind turbine design:Critical analysis, optimization and application of BEM theory,” Renewable Energy, Vol. 32, pp. 2291-2305, 2007.
33. S. Roger, “Blade design aspects,” Renewable Energy, Vol. 16, pp. 1272-1277, 1999.
34. A. Brahim, “Recent Advances in Composite Materials for Wind Turbine Blades,” Advances in Materials Science and Applications, pp. 172–173, 2013.
35. C. P. Chen and T. Y. Kam, ”Failure Analysis of Small Composite Sandwich Turbine Blade Subjected to Extreme Wind Load,” Procedia Engineering, Vol. 14, 2011, pp. 1973-1981.
36. http://s90304a123.pixnet.net/blog/post/30046954-%E9%A2%A8%E5%8A%9B%E7%99%BC%E9%9B%BB%E8%91%89%E7%89%87%E8%88%87%E9%9B%BB%E9%A2%A8%E6%89%87%E8%91%89%E7%89%87%E7%9A%84%E4%B8%8D%E5%90%8C, retrieved on November 13, 2014.
37. I. H. Abbott, V. D. Albert and L. Stivers, “Summary of Airfoil Data,” National Advisory Committee for Aeronautics, NACA Technical Report 824, pp. 5-17, 1945.
38. R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., John Wiley & Sons, Inc., Danvers, 2002.
39. R. C. Hibber, Statics and Mechanics of Materials, 6th, Pearson Education, US, 2004.
40. ANSYS Release 12.1, ANSYS, Inc., PA, 2009.
41. L. J. Segerlind, Applied Finite Element Analysis, 2nd, Wiley, New York, 1984.
42. ANSYS User’s Manual, ANSYS Inc.
43. 康淵,陳信吉,ANSYS入門,全華科技圖書股份有限公司,台北,2003。
44. R. F. Gibson, Principles of Composite Material Mechanices, 2nd ed., McGraw-Hill, New York, 2007.
45. https://confluence.cornell.edu/display/SIMULATION/Wind+Turbine+Blade+FSI+%28Part+1%29+-+Geometry, retrieved on January 20, 2015.
46. http://www2.hkedcity.net/sch_files/a/kws/kws-solar/public_html/wind_table.htm, retrieved on June 21, 2014.
47. 陳建亨,複合材料木琴鍵之結構最佳化設計與動態分析,國立清華大學機械工程研究所碩士論文,2006。
48. ASTM D638-10, “Standard test method for tensile properties of plastics,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
49. ASTM D792-08, “Standard test method for density and specific gravity (relative density) of plastics by displacement,” Annual Book of ASTM Standards, Section 3, Vol. 8.1, 2008.
50. N. D. Cristescu, E. M. Craciun and Eugen Soós, Mechanics of Elastic Composites., Chapman&Hall/CRC, New York, 2004.