研究生: |
陳文健 Chen, Wen-Chien |
---|---|
論文名稱: |
以CMOS-MEMS製程平台實現高性能微機械共振器電路 Performance Enhancement of Integrated Micromechanical Resonators Using Generalized CMOS-MEMS Platforms |
指導教授: |
方維倫
Weileun Fang 李昇憲 Li, Sheng-Shian |
口試委員: |
楊燿州
徐文祥 陳國聲 羅炯成 Dana Weinstein Whsu, Wen-Syang Lo, Chiung |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 208 |
中文關鍵詞: | 金氧半導體微機電 、射頻微機電 、製程平台 、全整合式 、電容式 、微機械共振器 、甚高頻 、吸附效應 、次微米 、頻率調控 、全差分 、二氧化矽結構 、音叉 、方形板 、體聲波 、高Q值 、溫度補償 、複合結構 |
外文關鍵詞: | CMOS-MEMS, RF-MEMS, platform, fully-integrated, capacitively-transduced, micromechanical resonator, VHF, pull-in, deep-submicron, frequency tuning, fully-differential, oxide structure, tuning fork, square plate, bulk acoustic, High-Q, temperature compensation, composite structure |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金氧半導體微機電(CMOS-MEMS)技術藉由CMOS製程能同時於單一晶片上(On-Chip)完成積體電路IC與MEMS元件之製作,具有縮減面積、低雜訊,及穩定的標準化製程…等優點。本論文即採用此整合式技術開發多種具備優異性能的電容式(Capacitively-transduced)高頻(HF)即甚高頻(VHF)微機械共振器,應用於感測器、時基(timing reference)及射頻(Radio Frequency, RF)等元件。為了達到此研究目標,本論文成功開發二氧化矽(SiO2)濕式蝕刻(wet etching)及金屬(Metal)濕式蝕刻(wet etching)此兩種同時與0.35 m 2P4M及0.18 m 1P6M CMOS製程相容之懸浮後製程(releasing post-process),並分別製作出多種結構設計與不同材料組成的金屬型式以及二氧化矽型式之整合式微機械共振器。除了開發製程平台,本論文同時致力於MEMS共振器之性能強化;藉由(1)間隙(Gap)縮減機制、(2)高Q值材料與細小支撐結構、(3)二氧化系與金屬之複合材料、(4)獨特結構、(5)陣列式共振器與體模態振動,及(6)全差分式(Fully-differential)電性架構之設計;分別改善共振器的關鍵問題如運動阻抗、品質因子、熱穩定、頻率調控、功率負載能力與feedthrough效應,成功製作出相較其他文獻之元件,具有相對低運動阻抗、高Q值、溫度補償能力、類線性頻率調控機制、高功率負載能力及大訊雜比之CMOS-MEMS微機械共振器。此外;本論文亦發展一套通用被動式溫度補償理論模型,可設計複合結構體模態共振器之溫度係數。本論文增強CMOS-MEMS微機械共振器性能之成果將有助於未來整合式微機械震盪器(Oscillator)之設計,並應用於消費性電子產品中之時基(Timing reference)與頻率參考元件。
The CMOS-MEMS technology with many advantages, including smaller footprints size, without noise from bond pad, and standard foundry process, is utilized in this dissertation to develop various capacitively-transduced HF/VHF micromechanical resonators with several unique performances targeted for sensor, timing reference, and RF applications. To attain this goal, two generalized releasing post-process, such as oxide wet etching and metal wet etching techniques, compatible with 0.35 m 2P4M and 0.18 m 1P6M CMOS processes, were successfully developed to fabricated metal-type and oxide-type integrated resonators, respectively, with diverse structural designs as well as different material configurations. In addition to post-process development, this dissertation attend to improve main consideration of MEMS resonator design issues, such as motional impedance (Rm), quality factor (Q), thermal stability, frequency tuning, power handling capability, and feedthrough cancellation, through (1)gap reduction mechanism, (2)high-Q material and tiny-support, (3)oxide-metal composite, (4)elegant structural design, (5)resonator-array and bulk mode vibration, and (6)fully-differential electric setup, respectively, successfully demonstrating CMOS-MEMS resonators with better characteristics of relative low-Rm, high-Q, temperature compensated capability, quasi-linear frequency tuning ability, high power handling, large signal to noise ratio, than previous CMOS-MEM works. In addition, this dissertation also derive a generalized theoretical model of passive temperature compensation for composite bulk mode resonators, capable of further controlling its temperature coefficient of frequency (TCf) Such performance improved results might benefit the future integrated micromechanical oscillator design for timing or frequency reference in consumer electronics.
[1] T. A. Core, W. K. Tsang, and S. J. Sherman, “Fabrication technology for an integrated surface-micromachined sensor,” Tech. Digest, Solid State Technology, 1993, pp. 39-44.
[2] C. T.-C. Nguyen and R. T. Howe, “An integrated CMOS micromechanical resonator high-Q oscillator,” IEEE J. Solid-State Circuits, vol. 34, no. 4, pp. 440-455, April 1999.
[3] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, and P. J. McWhorter, “Embedded micromechanical devices for the monolithic integration of MEMS with CMOS”, Tech. Digest, IEEE Int. Electron Devices Mtg., Washington, D.C., Dec. 10-13, 1995, pp. 609-612.
[4] B. Kim, M. A. Hopcroft, R. Melamud, C. M. Jha, M. Agarwal, S. A. Chandorkar, and T. W. Kenny, “CMOS compatible wafer-scale encapsulation with MEMS resonators,” in ASME InterPACK’07, Vancouver, British Columbia, Canada, 2007.
[5] W.-L. Huang, Z. Ren, Y.-W. Lin, H.-Y. Chen, J. Lahann, and C. T.-C. Nguyen, “Fully monolithic CMOS nickel micromechanical resonator oscillator,” Tech. Digest, 21st IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS’08), Tucson, Arizona, Jan. 13-17, 2008, pp.10-13.
[6] J. Costa, T. Ivanov, J. Hammond, J. Gering, E. Glass, J. Jorgenson, D. Dening, D. Kerr, J. Reed, S. Crist, T. Mercier, S. Kim, and P. Gorisse, “Integrated MEMS switch technology on SOI-CMOS,” Tech. Digest, Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, South Carolina, June 2008, pp. 18-21.
[7] C. T.-C. Nguyen, “Frequency-selective MEMS for miniaturized low-power communication devices (invited),” IEEE Trans. Microwave Theory Tech., vol. 47, no. 8, pp. 1486-1503, Aug. 1999.
[8] http://www.discera.com/
[9] http://www.sitime.com/
[10] G. K. Fedder, S. Santhanam, M. L. Reed, S. C. Eagle, D. F. Guillou, M. S.-C. Lu, and L. R. Carley, “Laminated high-aspect-ratio microstructures in a conventional CMOS process,” Sens. Actuators A, vol. 57, pp.103–110, 1996.
[11] F. Chen, J. Brotz, U. Arslan, C.-C. Lo, T. Mukherjee, and G. K. Fedder, “CMOS-MEMS resonant RF mixer-filters,” Tech. Digest, 18th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS’05), Miami Beach, Florida, Jan. 30-Feb. 3, 2005, pp. 24-27.
[12] C.-C. Lo, F. Chen, and G. K. Fedder, “Integrated HF CMOS-MEMS square-frame resonators with on-chip electronics and electrothermal narrow gap mechanism,” Tech. Digest, Transducers’05, Seoul, Korea, June 5-9, 2005, pp. 2074-2077.
[13] C.-C. Lo, “CMOS-MEMS resonators for mixer-filter applications,” Ph.D. Dissertation, Dept. of ECE, Carnegie Mellon University at Pittsburgh, 2008.
[14] A. Uranga, J. Teva, J. Verd, J. L. Lopez, F. Torres, J. Esteve, G. Abadal, F. Perez-Murano, and N. Barniol, “Fully CMOS integrated low voltage 100 MHz MEMS resonator,” IEEE Electronics Letters, Nov. 2005, vol. 41, no.24, pp.1327-1328.
[15] J. Verd, A. Uranga, J. Teva, J. L. Lopez, F. Torres, J. Esteve, G. Abadal, F. Pe´rez-Murano, and N. Barniol, “Integrated CMOS-MEMS with on chip read-out electronics for high frequency applications,” IEEE Electron Device Letter, vol. 27, no. 6, pp. 495-497, June 2006.
[16] J. T. Merono, “Integration of CMOS-MEMS resonators for radiofrequency application in the VHF and UHF bands,” Ph.D. Dissertation, Dept. of EE, Universitat Aut`onoma de Barcelona at Bellaterra, 2007.
[17] J. L. Lopez, J. Verd, A. Uranga, J. Giner, G. Murillo, F. Torres, G. Abadal, and N. Barniol, “A CMOS-MEMS RF-tunable bandpass filter based on two high-Q 22-MHz polysilicon CC-beam resonators,” IEEE Electron Device Letter, vol. 30, no. 7, pp. 718-720, July 2006.
[18] J. Teva, G. Abadal, A. Uranga, J. Verd, F. Torres, J. L. Lopez, J. Esteve, F. Pérez-Murano, and N. Barniol, “From VHF to UHF CMOS-MEMS monolithically integrated resonators,” Tech. Digest, 21st IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS’08), Tucson, Arizona, USA, Jan. 13-17, 2008, pp. 82-85.
[19] J. L. Lopez, J. Verd, J. Teva, G. Murillo, J. Giner, F. Torres, A. Uranga, G. Abadal, and N. Barniol, “Integration of RF-MEMS resonators on submicrometric commercial CMOS technologies,” J. Micromech. Microeng., vol. 19, no. 1, pp. 13-22, Jan. 2009.
[20] W.-C. Chen, C.-S. Chen, K.-A. Wen, L.-S Fan, W. Fang, and S.-S. Li, “A generalized foundry CMOS platform for capacitively-transduced resonators monolithically integrated with amplifiers,” Tech. Digest, 23rd IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS’10), Hong Kong, Jan. 24-28, 2010, pp. 204-207.
[21] K. Wang, A.-C. Wong, and C. T.-C. Nguyen, “VHF free-free beam high-Q micromechanical resonators,” IEEE/ASME J. Microelectromech. Syst., vol. 9, no. 3, pp. 347-360, Sept. 2000.
[22] S. Pourkamali, Z. Hao, and F. Ayazi, “VHF single crystal silicon elliptic bulk-mode capacitive disk resonators, Part II: Implementation and Characterization,” IEEE/ASME J. Microelectromech. Syst., vol. 13, no. 6, pp. 1054-1062, Dec. 2004.
[23] R. Melamud, S.A. Chandorkar, B. Kim, H. K. Lee, J. C. Salvia, G. Bahl, M. A. Hopcroft, and T. W. Kenny, “Temperature-insensitive composite micromechanical resonators,” IEEE/ASME J. Microelectromech. Syst., vol. 18, no. 6, pp. 1409-1419, Dec. 2009.
[24] K. M. Lakin, K. T. McCarron, and J. F. McDonald, “Temperature compensated bulk acoustic thin film resonators,” Tech. Digest, IEEE Ultrasonics Symposium, Oct. 2000, pp.855-858.
[25] W.-L. Huang, “Fully monolithic CMOS nickel micromechanical resonator oscillator for wireless communications,” Ph.D. Dissertation, Dept. of EECS, University of Michigan at Ann Arbor, 2008.
[26] F. D. Bannon, J. R. Clark, and C. T.-C. Nguyen, “High-Q HF microelectromechanical filters,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 512-526, April 2000.
[27] C.-L. Dai, “A maskless wet etching silicon dioxide post-CMOS process and its applications,” Microelectronic Engineering, vol. 83, pp. 2543-2550, July 2006.
[28] G. K. Ho, K. Sundaresan, S. Pourkamali, and F, Ayazi, ”Micromechanical IBARs: Tunable high-Q resonators for temperature-compensated reference oscillators,” IEEE/ASME J. Microelectromech. Syst., vol. 19, no. 3, pp. 503-514, June 2010.
[29] H. Nayfeh and D. T. Mook, Nonlinear Oscillations, New York: John Wiley & Sons, 1979.
[30] V. Kaajakari, T. Mattila, A. Oja, and H. Seppä, “Nonlinear limits for single-crystal silicon microresonators,” IEEE/ASME J. Microelectromech. Syst., vol. 13, no. 5, pp. 715-724, Oct. 2004.
[31] W.-C. Chen, M.-H, Li, W. Fang, and S.-S. Li, “Realizing deep-submicron gap spacing for CMOS-MEMS resonators with frequency tuning capability via modulated boundary conditions,” Tech. Digest, 23rd IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS’10), Hong Kong, Jan. 24-28, 2010, pp. 735-738.
[32] Personal communication with TSMC Inc.
[33] W.-T. Hsu, “Temperature insensitive micromechanical resonators,” Ph.D. Dissertation, Dept. of EECS, University of Michigan at Ann Arbor, 2001.
[34] W.-C. Chen, W. Fang, and S.-S. Li, “A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits,” J. Micromech. Microeng., 21 (2011) 065012.
[35] G. K. Fedder, “CMOS-MEMS resonators mixer-filters,” in Tech. Dig., IEEE Int. Electron Devices Mtg., Washington, DC, Dec. 5, 2005, pp. 274–277.
[36] M. Hopcroft, R. Melamud, R. N. Candler, W.-T. Park, B. Kim, G. Yama, A. Partridge, M. Lutz, and T. W. Kenny, “Active temperature compensation for micromachined resonators,” in Tech. Dig., Hilton Head Workshop, Hilton Head Island, SC, June 6–10, 2004, pp. 364–367.
[37] C. M. Jha, M. A. Hopcroft, S. A. Chandorkar, J. C. Salvia, M. Agarwal, R. N. Candler, R. Melamud, B. Kim, and T. W. Kenny, “Thermal isolation of encapsulated mems resonators,” IEEE/ASME J. Microelectromech. Syst., vol. 17, no. 1, pp. 175-184, Feb. 2008.
[38] J. C. Salvia, R. Melamud, S. A. Chandorkar, S. F. Lord, and T. W. Kenny, “Real-time temperature compensation of mems oscillators using an integrated micro-oven and a phase lock loop,” IEEE/ASME J. Microelectromech. Syst., vol. 19, no. 1, pp. 192-201, Feb. 2010.
[39] G. K. Ho, K. Sundaresan, S. Pourkamali, and F. Ayazi, “Micromechanical IBARs tunable high-Q resonators for temperature-compensated reference oscillator,” IEEE/ASME J. Microelectromech. Syst., vol. 19, no. 3, pp. 503-515, June 2010.
[40] K. Sundaresan, G. K. Ho, S. Pourkamali, and F. Ayazi, “Electronically temperature compensated silicon bulk acoustic resonator reference oscillator,” IEEE J. Solid-State Circ., vol. 42, no. 6, pp. 1425–1434, June. 2007.
[41] C.-C. Lo, and G. K. Fedder, “On-chip high quality factor CMOS-MEMS silicon-fin resonators,” Tech. Digest, Transducers’07, Lyon, France, pp. 2449-2452, June, 2007.
[42] J. L. Lopez, J. Verd, A. Uranga, J. Giner, G. Murillo, F. Torres, G. Abadal, and N. Barniol, “A CMOS–MEMS RF-tunable bandpass filter based on two high-Q-22-MHz polysilicon clamped-clamped beam resonators,” IEEE Electron Device Letters, vol. 30, no. 7, pp. 718-720, July, 2009.
[43] M. K. Zalalutdinov, J. D. Cross, J. W. Baldwin, B. R. Ilic, W. Zhou, B. H. Houston, and J. M. Parpia, ”CMOS-integrated RF MEMS resonators,” IEEE/ASME J. Microelectromech. Syst., vol. 19, no. 4, pp. 807-815, Aug. 2010.
[44] Y.-C. Liu, M.-H. Tsai, W.-C. Chen, S.-S. Li, and W. Fang, “High-Q, large-stopband-rejection integrated CMOS-MEMS oxide resonators with embedded metal electrodes,” to be presented in the 16th Int. Conf. on Solid-State Sensors & Actuators (Transducers’11), Beijing, China, June 5-9, 2011, pp.934-937.)
[45] W.-C. Chen, M.-H. Li, Y.-C. Liu, D. Weinstein, W. Fang, and S.-S. Li, “Fully-differential CMOS-MEMS square-plate oxide resonators with embedded poly-silicon electrodes,” Proceedings, 17th Int. Conf. on Solid-State Sensors & Actuators (Transducers’13), Barcelona, Spain, June 16-20, 2013, pp.2293-2295.
[46] M.-H. Li, W.-C. Chen, and S.-S. Li, “CMOS-MEMS transverse-mode square plate resonator with high Q and low motional impedance,” in Digest Tech. Papers Transducers‘11, Beijing, 2011.
[47] K.-L. Chen, “Encapsulated out-of-plane differential square-plate resonator with integrated actuation electrodes,” in Digest Tech. Papers Transducers’09, Denver, 2009.
[48] C.-S. Li, L.-J. Hou, and S.-S. Li, “Advanced CMOS-MEMS resonator platform,” IEEE Electron Device Letters, vol. 33, pp. 272-274, Feb. 2012.
[49] W.-C. Chen, W. Fang, and S.-S. Li, “High-Q integrated CMOS-MEMS resonators with deep-submicron gaps and quasi-linear frequency tuning,” IEEE/ASME J. Microelectromech. Syst.(JMEMS), vol. 21, no. 6, pp. 065012, May 2011.
[50] W.-C. Chen, M.-H. Li, Y.-C. Liu, W. Fang, and S.-S. Li, “A fully-differential CMOS-MEMS DETF oxide resonator with Q > 4,800 and Positive TCF,” IEEE Electron Device Letters, vol. 33, no. 5, pp. 721-723, May, 2012.
[51] W.-C. Chen, W. Fang, and S.-S. Li, “VHF CMOS-MEMS Oxide Resonators with Q > 10,000,” Digest of Technical Papers, 66th IEEE International Frequency Control Symposium (IFCS’12), Baltimore, Maryland, USA, May 22-24, 2012.
[52] W.-T. Hsu, and C. T.-C. Nguyen, “Geometric stress compensation for enhanced thermal stability in micromechanical resonators,” in Tech. Dig., IEEE Ultrason. Symp., Sendai, Japan, Oct. 5–8, 1998, pp. 945–948.
[53] W.-T. Hsu, J. R. Clark, and C. T.-C. Nguyen, “Mechanically temperature-compensated flexural-mode micromechanical resonators,” in Tech. Dig., IEEE Int. Electron Devices Mtg., San Francisco, CA, Dec. 11-13, 2000, pp. 399-402.
[54] K. M. Lakin, K. T. McCarron, and J. F. McDonald, “Temperature compensated bulk acoustic thin film resonators,” in Tech. Dig., IEEE Ultrason. Symp., San Juan , San Juan, Puerto Rico, Oct. 22–25, 2000, pp. 855–858.
[55] B. Kim, R. Melamud, M. A. Hopcroft, S. A. Chandorkar, G. Bahl, M. Messana, R. N. Candler, G. Yama, and T. W. Kenny, “Si-SiO2 composite MEMS resonators in CMOS compatible wafer-scale thin-film encapsulation,” in Proc. IEEE Intl. Freq. Cont. Symp., Geneva, Switzerland, May 29–June 1, 2007, pp. 1214–1219.
[56] R. Melamud, B. Kim, S. Chandorkar, M. Hopcroft, M. Agarwal, C. Jha, and T. Kenny, “Temperature-compensated high-stability silicon resonators,” Appl. Phys. Lett., vol. 90, no. 24, p. 244 107-3. Jun. 2007.
[57] A. K. Samarao, and F. Ayazi, “Temperature compensation of silicon micromechanical resonators via degenerate doping,” in Tech. Dig., IEEE Int. Electron Devices Mtg., Baltimore, MD, Dec. 7-9 2009, pp. 789-792.
[58] A. K. Samarao, G. Casinovi, and F. Ayazi, “Passive TCF compensation in high Q silicon micromechanical resonators,” in Tech. Dig., 23rd IEEE Int. MEMS Conf., Hong Kong, Jan. 24-28, 2010, pp. 116-119.
[59] R. Tabrizian, M. Pardo, and F. Ayazi, "A 27 MHz Temperature Compensated MEMS Oscillator with Sub-ppm Instability," IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2012), Paris, France, Jan. 2012, pp. 23-26.
[60] V. A. Thakar, Z. Z. Wu, A. Peczalski, and M. Rais-Zadeh, "Piezoelectrically transduced temperature-compensated flexural-mode silicon resonators," IEEE/ASME Journal of Microelectromechanical Systems, Vol. 22, No. 3, pp. 819-823, June, 2013.
[61] W.-C. Chen, M.-H, Li, W. Fang, and S.-S. Li, “High-Q integrated CMOS-MEMS resonators with deep-submicron gaps,” in Proc. IEEE Intl. Freq. Cont. Symp., Newport Beach, CA, Jun. 2-4, 2010, pp.340-343.
[62] K. Wang, A.-C. Wong, and C. T.-C. Nguyen, “VHF free-free beam high-Q micromechanical resonators,” IEEE/ASME J. Microelectromech. Syst., vol. 9, no. 3, pp. 347-360, Sept. 2000.
[63] J. Verd, M. Sansa, A. Uranga, C. Pey, G. Abadal, F. Perez-Murano , and N. Barniol, “Monolithic CMOS-MEMS oscillators with micro-degree temperature resolution in air conditions,” in Tech. Dig., 15th Int. Conf. Solid-State Sensors & Actuators (Transducers’09), Denver, CO, June 21-25, 2009, pp. 2429-2432.
[64] W.-L. Huang, “Fully monolithic CMOS nickel micromechanical resonator oscillator for wireless communications,” Ph.D. Dissertation, Dept. of EECS, University of Michigan at Ann Arbor, 2008.
[65] Weaver W Jr, Timoshenko S P and Young D H 1990 Vibration
[66] Problems in Engineering 5th edn (New York: Wiley)
[67] Sunil A. Bhave and Roger T. Howe, “Silicon nitride-on-silicon bar resonator using internal electrostatic transduction”, IEEE Transducer’05, Seoul, Korea, June 5-9, 2005
[68] Dana Weinstein and Sunil A. Bhave, "Internal dielectric transduction in bulk-mode resonators," IEEE/ASME. Journal of Microelectromechanical Systems (JMEMS), 18(6), 1401-1408 (2009).
[69] Dana Weinstein and Sunil A. Bhave, "Acoustic resonance in an Independent-Gate FinFET," Solid State Sensor, Actuator and Microsystems Workshop (Hilton Head 2010), pp. 459-462.