簡易檢索 / 詳目顯示

研究生: 鄭佳和
Cheng, Chia-He
論文名稱: 結合微接觸壓印與模板侷限收集分析海馬迴神經軸突與生長錐蛋白質
指導教授: 張兗君
Chang, Yen-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 59
中文關鍵詞: 生長錐神經軸突柄微機電系統微接觸壓印
外文關鍵詞: growth cone, Axon shaft, Microelectromechanical Systems, microcontact printing
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在人體內神經元(neuron)是一種高度分化的細胞,具有許多特化的次細胞結構。而各個次細胞結構中的蛋白質分析,一直是科學家們致力研究的課題。其中神經軸突是神經細胞中最長的神經纖維,負責著訊號傳導的工作。然而,在目前的文獻中並無好的方法學能夠收集大量且純度高的神經軸突蛋白質,所以在本論文嘗試結合微機電系統與神經細胞培養,製作細胞生長的微接觸壓印刻痕玻片,以分離、純化、收集神經軸突與生長錐等次細胞結構以進行蛋白質分析。在研究中,我們發現以往以人手操作的收集方式,不但穩定性不佳且收集時程較長,因此我們根據玻片斷裂測試結果設計刻痕玻片斷裂操作台以提昇收集過程的穩定度與節省收集時程。除此之外,根據神經軸突蛋白質分析的結果顯示。此方法學所收集的神經軸突蛋白質並無遭受細胞體蛋白質污染。而在與細胞體蛋白質比較後,發現神經軸突蛋白質具有不同的組成與不同的轉譯後修飾機制(post-translational modification)。利用此方法學,未來可望能夠對神經軸突蛋白質有更加深入的探討與分析,進而對於神經軸突的引導(guidance),再生(regeneration)等研究課題有著重要的貢獻。


    壹、序論………………………………………………………………1 貳、實驗材料與方法…………………………………………………6 參、結果………………………………………………………………24 肆、討論………………………………………………………………32 伍、參考文獻…………………………………………………………38 陸、圖…………………………………………………………………43 柒、附錄………………………………………………………………57

    Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of
    abnormally phosphorylated tau in the breakdown of microtubules
    in Alzheimer disease. Proc. Natl. Acad. Sci. USA 91:5562–5566.

    Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant
    of neuronal development and plasticity. Trends Neurosci. 20:84-91.

    Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Sudhof TC (2002) SynCAM, a synaptic adhesion molecule the drives synapse assembly. Science 297:1525-1531

    Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35:567-576.

    Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev. 33:95–130.

    Campbell DS and Holt CE (2001) Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32:1013–1026.

    Campbell DS and Holt CE (2003) Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37:939–952.

    Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Ann. Rev. Neurosci. 30:209-33.

    Craig AM, Graf ER, Linhoff MW (2006) How to build a central synapse: clues from cell culture. Trends Neurosci. 29:8-20.

    Denny JB (2006) Molecular mechanisms, biological actions, and
    neuropharmacology of the growth-associated protein GAP-43.
    Curr. Neuropharm 4:293-304.

    Dent EW, Gerter FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209-227.

    Dickson, B.J (2002) Molecular mechanisms of axon guidance. Science 298:1959-1964.

    Folch A, Jo BH, Hurtado O, Beebe DJ, Toner M (2000) Microfabricated elastomeric stencils for micropatterning cell cultures. J Biomed Mater Res. 52:346-353.

    Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther
    RA, (1989) Multiple isoforms of human microtubule-associated
    protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519-526.

    Hanz S, Perlson E, Willis D, Zheng JQ, Massarwa R, Huerta JJ, Koltzenburg M, Kohler M, van-Minnen J, Twiss JL, FainzilberM (2003) Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40:1095–1104.

    Himmler A, Drechsel D, Kirschner MW, Martin DW Jr, (1989)
    Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol. Cell Biol. 9:1381-1388.

    Iqbal K, Zaidi T, Bancher C, Grundke-Iqbal I (1994) Alzheimer
    paired helical filaments. Restoration of the biological activity by
    dephosphorylation. FEBS Lett. 349: 104-108.

    Kaplan BB, Lavina ZS, Gioio AE (2004) Subcellular Compartmentation of neuronal protein synthesis: New insights into the biology of the neuron. Ann. N.Y. Acad. Sci. 101:244-54

    Koenig E, Martin R, Titmus M, Sotelo-Silveira JR (2000) Cryptic peripheral ribosomal domains distributed intermittently along mammalian myelinated axons. J. Neurosci. 20:8390–8400.

    Ming GL, Wong ST, Henley J, Yuan XB, Song HJ, Nicholas CS, Poo MM (2002) Adaptation in the chemotactic guidance of nerve growth cones. Nature 417:411–418.

    Moccia R, Chen D, Lyles V, Kapuva E, E Y, Kalachikov S, Spahn CMT, Frank J, Kandel RR, Barad M, Martin KC (2003) An unbiased cDNA library prepared from isolated Aplysia sensory neuron processes is enriched for cytoskeletal and translational mRNAs. J. Neurosci. 23:9409-17.

    Mosevitsky MI (2005) Nerve en ding “signal” proteins GAP-43, MARCKS, and BASP1. Int. Rev. Cytol. 245:245-325.

    Mosevitsky MI, Novitskaya VA, Plekhanov AY, Skladchikova GY (1994) Neuronal protein GAP-43 is a member of novel group of brain acid-soluble proteins (BASPs). Neurosci. Res. 19:223-228.

    Nam Y, Musick K, Wheller BC (2006) Application of PDMS microstencil as a replaceable insulator toward a single-use planer microelectrode array. Biomed Microdevices 8:375-381.

    Oestreicher AB, De Graan PN, Gispen WH, Verhaagen J, Schrama LH (1997) B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system Prog. Neurobiol. 53:627-686.

    Pal R, Sung KE, Burns MA (2006) Microstencils for the patterning of nontraditional materials. Langmuir 22:5392-5397.

    Pfenninger KH, Ellis L, Johnson MP, Friedman LB, Somlo S (1983) Nerve growth cones isolated from fetal rat brain: subcellular fractionation and characterization. Cell 35:573-584

    Scheiffle P (2003) Cell-cell signaling during synapse formation in the CNS. Ann. Rev. Neurosci. 26:485-508.

    Scheiffle P, Fan J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657-669

    Sotelo-Silveira J, Crispino M, Puppo A, Sotelo JR, Koenig E (2008) Myelinated axons contain beta-actin mRNA and ZBP-1 in periaxoplasmic ribosomal plaques and depend on cyclicAMP and F-actin integrity for in vitro translation. J. Neurochem. 104:545–557.

    Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods 2:599–605.

    Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123-1133.

    Verma P, Chierzi S, Codd AM, Campbell DS, Meyer RL, Holt CE, Fawcett JW (2005) Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J. Neurosci. 25:331–342.

    Willis D, Li KW, Zheng JQ, Chang JH, Smit A, Kelly T, Merianda JT, Sylvester J, Minnen JV, Twiss JL (2005) Differential Transport and Local Translation of Cytoskeletal, Injury-Response, and Neurodegeneration Protein mRNAs in Axons. J. Neurosci. 25:778–791.

    Zakharov VV and Mosevitsky MI (2001) Site-specific calciumdependent
    proteolysis of neuronal protein GAP-43. Neurosci. Res. 39:447-453.

    Zakharov VV, Bogdanova MN, Mosevitsky MI (2005) Specific
    proteolysis of neuronal protein GAP-43 by calpain: characterization,
    regulation, and physiological role. Biochemistry (Moscow) 70: 897-907.

    Zheng JQ, Kelly TK, Chang B, Ryazantsev S, Rajasekaran AK, Martin KC, Twiss JL (2001) A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons. J. Neurosci. 21:9291–9303.

    Zheng JQ, Yao J, Sasaki Y, Wen Z, Bassell GJ (2006) An essential role for β-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat.. Neurosci. 9:1265-1273.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE