簡易檢索 / 詳目顯示

研究生: 邱文俊
Wen-June Cho
論文名稱: KOH/醇類蝕刻液系統應用於單晶矽濕式蝕刻之研究
The Research of the KOH/Alcohol Etchant System in Wet Etching of Monocrystal Silicon
指導教授: 金惟國
Wei-Kuo Chin
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 203
中文關鍵詞: 蝕刻單晶矽醇類氫氧化鉀
外文關鍵詞: etchant, monosilicon, alcohol, KOH
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究主要是在探討醇類修飾劑添加入KOH溶液中,所形成之蝕刻液進行矽晶蝕刻反應時,醇類修飾劑對不同矽晶格面之影響。研究內容主要是藉由二種不同形式之醇類修飾劑,分別為一醇類及多醇類,添加入KOH溶液中,在不同的蝕刻溫度、KOH濃度、醇類修飾劑濃度等條件下,進行(100)及(110)矽晶格面之蝕刻反應,觀察蝕刻反應後的結果。在最大蝕刻速率的條件下,進行(100)及(110)矽晶格面之圓形凹孔圖案演化之探討,同時探討(100)矽晶格平台在最大蝕刻速率的條件下進行蝕刻反應,方形凸角邊演化的情況,以便作為凸角補償設計之依據。
    研究結果發現,所加入之醇類修飾劑,並不會對(100)晶格面之蝕刻速率有太大之影響。而對(110)晶格面之蝕刻速率有顯著之影響。
    在高溫蝕刻及被蝕刻(100)晶格表面平坦化而言,部分醇類修飾劑能夠將被蝕刻之(100)晶格表面平坦化,而沒有錐形體之產生(hillocks)。
    在方形凸角演化之觀察中發現,凸角邊底切蝕刻率最快之晶格面為(211),在KOH/1-pentanol蝕刻液系統中, (211)晶格面之蝕刻速率降低的最多。另一方面,隨著醇類分子鏈長之增加,(100)晶格平台之面積縮減越來越少,在KOH/1-pentanol蝕刻液系統中,(100)晶格平台之面積縮減率最小。


    Abstract
    The study is mainly to discuss the influence of alcohol moderator on the different silicon crystalline plane, when the alcohol moderator was added into the KOH solution.
    Two types of alcohols were added into the KOH solution, one OH group alcohol and multi OH group alcohol. The etching rates of silicon (100) plane and (110) plane depended on the conditions of temperature, KOH concentration and alcohol concentration. At the condition of the highest etching rate, it discussed the development of circular concave of (100) silicon and (110) silicon. At the same time, it discussed the development of square convex of (100) silicon mesa under the condition of the highest etching rate for the design of convex compensation.
    It was found that the addition of alcohol had no influence on the etching rate of silicon (100) plane, but, significantly affected the etching rate of silicon (110) plane.
    For the high temperature etching and the smooth of the etched silicon (100) plane, some alcohols can make the etched silicon (100) plane smooth and produce no hillocks.
    By observing the development of the corner of the square convex, the highest etching rate of the convex corner undercut is (211) plane. The most reduction of the etching rate of (211) plane is at the KOH/1-pentanol etchant system. In the other way, the reduction of the (100) plane area gradually becomes less with the increase of the molecular chain length of alcohol. At the KOH/1-pentanol etchant system, the reduction ratio of the (100) plane area is least.

    目錄 摘要………………………………………………………I 謝誌………………………………………………………III 目錄………………………………………………………IV 圖目錄…………………………………………………VIII 表目錄……………………………………………………XVIII 壹、 緒論..…………………………………………1 1.1. 乾式電漿蝕刻……………………………………4 1.2. 濕式化學蝕刻…………………………………4 1.2.1. 蝕刻液…………………………………………4 1.3. 研究方向………………………………………8 貳、 理論與文獻回顧………………………………10 2.1. 矽晶體特性…………………………………………10 2.1.1. 矽之晶體結構…………………………………10 2.1.2. N型矽晶(n-type silicon)與P型矽晶(p-type silicon)………13 2.1.3. 電子能帶…………………………………………13 2.2.濕式化學蝕刻(Wet Chemical Etching)………16 2.2.1. 濕蝕刻原理………………………………………16 2.2.2. 均向蝕刻(Isotropic Etching)………………17 2.2.3. 非等向性蝕刻(Anisotropic Etching) ……19 2.3. 相關研究報告及理論……………………… ……24 2.3.1. 鍵結密度模型(Bond density model)……24 2.3.2. 水合模型(Hydration Model)………………24 2.3.3. 表面自由能模型(Surface Free Energy Model)……………24 2.3.4. 電化學模型(Electrochemical model)…………25 2.3.5. 階梯自由能模型(Step-free energy)模型……26 2.3.6. 化學反應速率限制/擴散限制(Chemical reaction-rate limited/ Diffusion limited )………………28 2.3.7. 其他研究報告………………………………31 2.4. 蝕刻表面之凸起結構…………………………35 2.5. 蝕刻停止機制…………………………………37 2.5.1. 高摻雜硼之蝕刻停止機制…………………37 2.5.2. 電化學控制蝕刻停止機制…………………38 2.6. 角落補償機制…………………………………39 2.7. 蝕刻幕罩………………………………………41 2.8. 電腦模擬…………………………………………42 參、實驗方法與設計 …………………………………46 3.1. 實驗分析儀器………………………………………46 3.1.1. 掃描式電子顯微鏡(Scanning Electron Microscopic簡稱SEM )原理………………………………………………46 3.1.2. 原子力電子顯微鏡(Atomic Force Microscopic簡稱AFM )原理………………………………………………48 3.2. 實驗藥品及設備…………………………………50 3.2.1. 實驗設備………………………………………50 3.2.2. 實驗藥品………………………………………50 3.3. 實驗步驟………………………………………53 3.4. 實驗流程………………………………………57 肆、實驗結果與討論………………………………59 4.1.單晶矽在KOH/醇類蝕刻液系統之蝕刻行為……59 4.1.1. (100)單晶矽之蝕刻…………………59 4.1.2. (110)單晶矽之蝕刻.……………………73 4.1.3. (111)單晶矽之蝕刻.………………………82 4.1.4. (110)/(100)晶格面蝕刻速率比…………85 4.1.5. (100)晶格蝕刻表面粗糙度…………………88 4.2. (100)及(110)單晶矽在不同蝕刻液中圓形圖案之演化行為...99 4.2.1. (100)單晶矽……………………………………99 4.2.2. (110)單晶矽……………………………………131 4.2.3.最大非等向蝕刻比值(Highest Anisotropy Ratio)之蝕刻液系統......................................158 4.3. 方形凸角演化(square corner development)..161 4.3.1. 65□C蝕刻溫度下方形圖案演化行為……162 4.3.2. 85□C蝕刻溫度下方形圖案演化行 ………175 4.3.3. KOH添加不同醇類修飾劑對(211)晶格面之蝕刻速率之影響............................................184 4.3.4. 不同KOH/醇類蝕刻液系統下蝕刻後(100)方形平台面積…182 伍、結論…………………………………………………191 陸、參考文獻……………………………………………194

    陸、參考文獻
    1. M. Koch, A .G. R. Evans and A. Brunnschweiler, J. Micromech. Microeng., 1997, 7, 221
    2. K. Menace and T. Shiozawa, Sens. Actuators, A 1994, 43, 72
    3. L. M. Roylance and J. B. Angell, IEEE Trans. Electron Devices 1979, 26, 1917
    4. J. S. Shie and S. H. Yu, Sens. Actuators, A 2000, 82, 297
    5. J. Drott, K. Lindstrom, L. Rosengen and T. Laurell, J. Micromech. Microeng., 1997, 7, 14
    6. P.J. Holmes, The Electrochemistry of Semiconductors, page 329, Academic press, 1962
    7. 張勁燕, 電子材料, 五南圖書公司,1999
    8. I. Zubel and M. Kramkowska, Sens. Actuators, A 2002, 101, 255
    9. B. D. Cullity, Element of X-ray Diffration, Addison-Wesley, 1978
    10. S.M. Sze and G.Y. Chang, ULSI Technology, McGraw-Hill, 1996.
    11. 施敏、張俊彥,半導體元件與物理與製作技術, 高立圖書公司, 1996
    12. D.G. Hill, K.L. Lear, and J. S. Harris, J. Electrochem. Soc. 1990, 137, 2912
    13. E.D. Palik, H.F. Gray and P.B. Klien, J. Electrochem. Soc. 1983, 130, 956
    14. W. Kern, RCA Rev. 1978, 39, 278
    15. P. Allonge, V. Costa-Kieling and H. Gerischer, J. Electrochem. Soc. 1993, 140, 1018
    16. J. M. Crishal and A. L. Harrington, J. Electrochem. Soc. 1962, 111, 202
    17. R. M. Finne and D. L. Klein, J. Electrochem. Soc. 1967, 114, 965
    18. O. Tabata, R. Asahi, H. Funabashi, K. Shimaoka and S. Sugiya, Sens. Actuators A 1992, 34, 51
    19. J.B. Price, Semiconductor Silicon, The Electrochemical Socity Softbound
    Proceedings Series, 1973, p. 339
    20. D.L. Kendall, Annual Review of Materials Science, 1979, 9, 373
    21. A. Reisman, M. Berkenblit, S. A. Chan, F. B. Kaufman, and D. C. Green, J. Electrochem. Soc. 1979, 126, 1406
    22. H. G. Linde, L. W. Austin, Sens. Actuators A, 1995, 49, 167
    23. J. J. Kelly, A.C. Reynders, Appl. Surf. Sci. 1987,29,149
    24. P. M. M. C. Bressers, S. A. S. P. Pagano and J. J. Kelly, J. Electroanal. Chem. 1995, 391, 159
    25. C. Moldovan, R. Iosub, D. Dascalu and G. Nechifor, Sens. Actuators A, 1999, 58, 438
    26. O. J. Glembocki, E. D. Palik, G. R. de Guel and D. L. Kendall, J. Electrochem. Soc. 1991, 138, 1055
    27. P. J. Hesketh, C. Ju and S. Gowda, J. Electrochem. Soc.1993, 140, 1080
    28. H. Seidel, L. Csepregi, A. Heuberger and H. Baumgartel, J. Electrochem. Soc.1990, 137, 3612
    29. M. Elwenspoek, U. Linderg, H. Kok and L. Smith, IEEE Internal Workshop on Micro Electro Mechanical Systems, MEMS’94, Osio, Japan, 1994, p.223
    30. Madou, Fundamentals of microfabrication, CRC Press, New York, 1997, p. 145
    31. K. Bean, IEEE Transactions on Electron Devices, 1978, 25, 1185
    Q. Lai, W. Hunziker and H. Melchior, Electronics Letters, 1996,32,20
    32. M. Elwenspoek, J. Electrochem. Soc. 1993, 140, 2075
    33. F.C. Frank, in: R. H. Doremus, B. W. Roberts, D. Turnbull (Eds.), Growth and Perfection of Crystals, Wiley, New York, 1958, p. 411
    34. N. Cabrera, in: J. H. de Boer (Ed.), Reactivity of Solids, Elsevier, Amsterdam, 1961, p. 345
    35. K. Sangwal, Etching of Crystals, North-Holland, Amsterdam, 1987, Chapter 4
    36. R. A. Wind and M. A. Hines, Surface Science, 2000, 460, 21
    37. J. Flide, Y.-C. Huang, T. A. Newton, M. A. Hines, J. Chem. Phys. 1998, 108, 5542
    38. H. Schroder and E. Obermeier, J. Micromech. Microeng. 2000, 10, 163
    39. G. C. DeSalvo, W. F. Teseng, and J. Comas, J. Electrochem. Soc. 1992, 139, 831
    40. P. M. M. C. Bressers, S. A. S. P. Pagano and J. J. Kelly, J. Electroanal. Chem., 1995, 391, 159
    41. T. Baum, and D. J. Schiffrin, J. Micromech. Microeng. 1997, 7, 338
    42. I. Zubel, Sens. Actuators A, 2000, 84, 116
    43. I. Zubel, I. Barycka, K. Kotowska, M. Kramkowska, Sens. Actuators A, 2001, 87, 163
    44. I. Zubel, M. Kramkowska, Sens. Actuators A, 2001, 93, 183
    45. K. Sato, M. Shikida, K. Tokoro, D. Uchikawa, Sens. Actuators A, 2000, 80, 179
    46. H. Tanaka, Y. Abe, T. Yoneyama, J. Ishikawa, O. Takenaka, K. Inoue, Sens. Actuators A, 2000, 82, 270
    47. S. S. Tan, M. L. Reed, H. Han, and R. Boudreau, J. Micromech. Microeng., 1994, 4, 147
    48. Y. K. Bhatnagar and A. Nathan, Sens. Actuators A, 1993, 36, 233
    49. A. P. Abbott, S. A. Campbell, J. Satherley, and D. Schiffrin, J. Electroanal. Chem. 1993, 348, 473
    50. U. Schnakenberg, W. Benecke, B. Lochel, S. Ullerich and P. Lange, Sens. Actuators A, 1991, 25-27, 1
    51. J. Weyher, and W. J. P. van Enckevort, J. Crystal Growth, 1983, 63, 292
    52. S. A. Campbell, K. Cooper, L. Dixon, R. Earwaker, S. N. Port and D. J. Schiffrin, J. Micromech. Microeng. 1995, 4, 147
    53. L. M. Landsberger, S. Naseh, M. Kahrizi and M. Paranjape, J. Micromech. Microeng. 1996, 6, 106
    54. S. S. Tan, M. L. Reed, H. Han and R. Boudreau, J. Microelectromech. Syst. 1996, 5, 66
    55. H. Schroder, E. Obermeier and A. Steckenborn, J. Micromech. Microeng. 1996, 9, 139
    56. E. D. Palik, O. J. Glembocki, I. J. Heard, P. S. Burno and L. Tenerz, J. Appl. Phys. 1991, 70, 3291
    57. J. T. L. Thong, P. Luo, W. K. Choi and S. C. Tan, J. Micromech. Microeng., 2001, 11, 61
    58. J. C. Greenwood, J. Electrochem. Soc., 1969, 116, 1325
    59. D. R. Turner, J. Electrochem. Soc., 1960, 107, 810
    60. J. W. Faust, Jr. and E. D. Palik, J. Electrochem. Soc., 1983, 130, 1413
    61. H. A. Waggener, Bell Sysr. Tech. J., 1970, 49, 473
    62. H. Schrőder, E. Obermeier, J. Micromech. Microeng. 1999, 10, 163
    63. K. E. Bean and W. R. Runyan, J. Electrochem. Soc. 1977, 124, 5C
    64. A. Koide, K. Sato and S. Tanaka, Proc. IEEE Micro Electro Mechanical Systems (MEMS)(Nara, Japan, 1992)(Technical Digest), p 216
    65. G. K. Mayer, H. L. Offereins, H. Sandmeier and K. Kuhl, J. Electrochem. Soc. 1990, 137, 3947
    66. E. Herr and H. Baltes, Sensors Actuators A, 1992, 31, 283
    67. A. Merlos, M. Acero, M. H. Bao, J. Bausells and J. Esteve, Sens. Actuators A, 1993, 37-38, 737
    68. D. W. Shaw, J. Crystal Growth, 1979, 47, 509
    69. R. J. Jaccodine, J. Applied Physics, 1962, 33, 2643
    70. A. Koide and S. Tanaka, Proceedings of 4th IEEE MEMS Workshop, 1991, 216
    71. “IntelliCAD”, Intellisense Corp., Wilmington, MA
    72. O. Than and S. Buttgenbach, Sens. Actuators A, 1994, 45, 85
    73. E. V. Veenedaal, K. Sato, M. Elwenspoek, A. J. Nijdam, J. V. Suchtelen, J. G. E. Gardeniers, W. J. P. V. Enckevort, Sens. Actuators A, 2000, 84, 324
    74. 陳力俊, 微電子材料與製程, 中國材料協會, 2000
    75. Y. K. Bhatnagar and A. Nathan, Sen. Actuators A, 1993, 36, 233
    76. T. Bitzer, N. V. Richardson and D. J. Schiffrin, Surf. Sci., 1997, 382, 686
    77. M. A. Gosálvez and R. M. Nieminen, New J. Phys. 2003, 5, 100.1
    78. M. Shikida, T. Masuda, D. Uchikawa and K. Sato, Sen. Actuators A, 2001, 90, 223
    79. E. V. Veedneeal, K. Sato, M. Shikida, A. J. Nijdam and J.V. Suchtelan, Sen. Actuators A, 2001, 93, 232
    80. E. V. Veedneeal, K. Sato, M. Shikida and J.V. Suchtelan, Sen. Actuators A, 2001, 93, 219
    81. T. Baum, J. Satherley and D. J. Schiffrin, Langmuir, 1998, 14, 2925
    82. T. Baum, and J. Satherley, J. Micromech. Microeng. 1997, 7, 338
    83. T. Baum and D. J. Schiffrin, J. Electroanal Chem, 1997, 436, 239
    84. H. Schrőder, E. Obermeier and A. Steckenborn, J. Micromech. Microeng. 1999, 9, 139
    85. R. L. David: Handbook of Chemistry and Physics, CRC, 2002-2003, p.9
    86. M. A. Gosálvez, A. S. Foster and R. M. Nieminen, Sens. Materials, 2003, 15, 53
    87. J. V. Suchtelen and E. V. Veenendaal, Sens. Materials, 2000, 13, 325
    88. B. Puers and W. Sansen, Sens. Actuators A, 1990, 21, 1036
    89. M. M. Abu-Zeid, J. Electrochem. Soc., 1984, 131, 2138
    90. H. L. Offereins, K. Kűhl and H. Sandmaier, Sens. Actuators A, 1998, 8, 80
    91. H. K. Trieu and W. Mokwa, J. Electrochem. Soc., 1984, 131, 2138
    92. D. B. Lee, J. Applied Phys., 1969, 40, 4569
    93. X. P. Wu. and W. H. Ko, Sens. Actuators A, 1989, 18, 207
    94. I. Zubel, Sens. Actuators A, 1998, 70, 260
    95. K. Sato, Sens. Actuators A, 1988, 64, 87

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE