簡易檢索 / 詳目顯示

研究生: 黃國政
Kuo-Cheng Huang
論文名稱: 化學還原法合成奈米金屬(鎳、鐵、銀)材料之研究與應用
The Chemical Synthesis and Application of Nanosized Metallic Materials (Nickel, Iron and Silver)
指導教授: 周更生
Kan-Sen Chou
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 164
中文關鍵詞: 奈米電極
外文關鍵詞: nanoparticle, nickel, iron, silver, electrode
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用化學還原法,以金屬鹽為前驅物,選擇適當的還原劑與分散劑,在水溶液中合成奈米鐵微粒與鎳絲等材料,並開發其相關應用。
    鎳絲是以聯胺為還原劑,在磁場中還原鎳離子而得。觀察其結構,可以發現鎳絲是由鎳微粒在磁場中受磁場作用,而排列連接成絲。研究顯示,鎳絲的型態受到兩個重要因素影響,分別為成核速率與成長速率。在快速成核的條件下,所獲得的鎳絲直徑較細,而在較慢速成核的條件下,鎳絲直徑會較粗。在成長速率較快時,鎳絲的結構會較為鬆散脆弱,相反地,在成長速率較慢時,鎳絲的結構會較為緊密,強度也會較高。而所製得之鎳絲,可應用在電磁波遮蔽材料上的應用,在相同的混煉程序下,鎳絲由於有較佳的形狀係數,因此較同粒徑之鎳粉,展現出較佳之電磁波遮蔽效果。
    奈米鐵微粒是以硼氫化鈉為還原劑,在水溶液中還原鐵離子而得。研究發現,水溶性高分子PAA(polyacrylic acid)有助於鐵微粒的分散,能夠確實阻止鐵微粒的聚集。此外,藉由成核促進劑鈀離子的添加,提供大量的成核點,能夠有效減小鐵微粒的粒徑。同時也發現,溶液的pH值對鐵微粒的大小也有很大的影響,研究顯示這是因為分散劑的分散能力受到pH值的影響所致。在較高的pH值時,PAA的分散能力較佳,因此能夠維持成核點的穩定,溶液中的成核點數量較多,最後,所成長的鐵微粒粒徑較小,相反的,若pH較低,以致於成核點分散不佳,成核點數量會減少,最後成長的鐵微粒則粒徑較大。奈米鐵微粒做為鎳鐵電池中鐵電極的活性材料時,其首次電容量最高達510 mAh/g-Fe,而放電電流也可達200 mA/g-Fe以上。顯示微小粒徑的確有助於提高鐵的利用率,而巨大的比表面積,則可有效提供大電流的輸出。
    另外,我們利用旋轉塗佈的方式,將奈米銀微粒成功平均分佈在基板上,藉由控制銀膠體濃度,可控制基板上銀微粒濃度從單獨分開到單層緊密堆積,甚至多層緊密堆積結構。在不同溫度下熱處理,發現多層之奈米銀堆積結構在100℃的熱處理下,即已導電,隨著溫度提高電阻先降低到一最小值,然後增加,最後又變為不導電。觀察其結構變化,可以發現奈米銀粒子隨著溫度提高而燒結,因此展現出導電特性。隨著溫度繼續增加,燒結程度繼續提高,但最後由於收縮成大顆粒,才又變得不導電。


    In this study, chemical reduction method was adopted to produce ultrafine metallic materials including iron nanoparticles and nickel fibers in aqueous solution from their respective metal salt precursors. Related applications of these metallic materials were also investigated.
    Nickel fibers were reduced from nickel chloride by hydrazine in the presence of magnetic field. It was found that nickel fibers were composed of nickel particles connected linearly under the effect of the magnetic field. This work showed the morphology of nickel fibers was mainly affected by two factors: nucleation rate and growth rate. In the fast nucleation case, thinner nickel fibers would be obtained, and on the contrary, thicker fibers would be obtained in the slow nucleation case. When the growth rate was fast, the nickel fibers would be loose and weak, and when the growth rate was slow, the nickel fibers would be tight and strong. In the application as electromagnetic interference (EMI) shielding materials, nickel fibers showed a better effectiveness than nickel particles with the same diameter, this is benefited from the high aspect ratio of nickel fibers in the composite materials.
    Iron nanoparticles can be synthesized by using sodium borohydride as the reducing agent and iron chloride as the precursor in the aqueous solution. In was found that the water-soluble polymer PAA (polyacrylic acid) is beneficial to the dispersion of iron nanoparticles, hence stopping the agglomeration of iron nanoparticles. In order to decrease the diameter of iron nanoparticles, palladium iron considered as the nucleation promoter can be added to increase the nucleation sites. In addition, it was also found that the pH of the solution affected the iron nanoparticle size noticeably, which directly caused from the dispersing capability of dispersing agent under different pH values. When the pH was high, the dispersing capability of PAA increased and the nucleation sites were well-dispersed. The numerous nucleation sites therefore subsequently led to the small iron nanoparticles. On the contrary, when the pH was low, the dispersing capability of PAA decreased and the nucleation sites were agglomerated. Consequently, the loss of nucleation sites led to the large iron nanoparticles. The iron nanoparticle electrode showed the capacity as high as 510 mAh/g-Fe with the discharge current of over 200 mAh/g-Fe. This result indicated the utilization ratio of iron was indeed improved by the decrease of iron nanoparticle size as well as the discharge current was enhanced by the large surface area of iron nanoparticles.
    The silver nanoparticles could be dispersed on a substrate by the spin-coating method. By controlling the silver colloid concentration, the distribution of silver nanoparticles on the substrate could be varied from dispersed separation to mono-layered close packing, eventually to multi-layered close packing. After heat treatment at different temperatures, the multi-layered silver nanoparticles structure started to exhibit conductivity after 100℃ treatment. The resistivity initially decreased with temperature and then increased to become finally insulated again. On the SEM observation, the silver nanoparticle structure exhibited sintering effect at the increase of temperature and became conductive. But when the temperature continuously increased, the silver nanoparticles structure shrank into large particles and became insulated again.

    1. 前言 1 2. 文獻回顧 4 2.1. 鎳絲的合成 4 2.2. 鎳絲在電磁波遮蔽材料上之應用 8 2.2.1. 電磁波遮蔽原理 8 2.2.2. 高分子/金屬複材之電磁波遮蔽材料應用 9 2.3. 奈米鐵微粒的合成 11 2.3.1. 熱分解法 11 2.3.2. 化學還原法 12 2.3.3. 微粒分散液穩定之機制 15 2.4. 奈米鐵微粒在電極材料之應用 16 2.4.1. 鐵電極的製作與改善 18 2.5. 奈米鐵微粒之其他應用 19 2.5.1. 環境處理 19 2.5.2. 奈米鐵在醫學方面之應用 23 2.6. 奈米微粒佈位材料之應用 24 2.6.1. 奈米碳管觸媒 24 2.6.2. 噴墨導線 29 3. 實驗方法 33 3.1. 藥品與儀器 33 3.1.1. 藥品 33 3.1.2. 儀器 34 3.2. 鎳絲的合成機制與特性分析 35 3.2.1. 鎳絲製程 35 3.2.2. 比表面積與微細結構尺寸之關係 37 3.2.3. 製作鎳絲/ABS複材 39 3.2.4. EMI遮蔽效率之量測 42 3.3. 奈米鐵微粒的合成與應用 43 3.3.1. 奈米鐵微粒的合成 43 3.3.2. 合成奈米鐵微粒製作電極 45 3.3.3. 奈米鐵電極之電量測試 47 3.4. 旋轉塗佈法製作奈米銀表面與其熱行為 47 3.4.1. 旋轉鍍膜法 47 3.4.2. 基材表面粒子密度量測 49 4. 結果與討論 50 4.1. 鎳絲合成機制與特性分析 50 4.1.1. 鎳絲製程之改進 50 4.1.2. 鎳絲之特性分析 50 4.1.3. 不同製程中鎳絲生成之動力學 53 4.1.4. 成核與成長理論 59 4.1.5. 影響鎳絲型態之因素 60 4.1.6. 結論 63 4.2. 鎳絲於電磁波遮蔽材料之應用 64 4.2.1. 鎳絲(鎳粉)/ ABS複材製備 64 4.2.2. 塑譜儀混煉法之EMI遮蔽效果 65 4.2.3. 塑譜儀混煉法之複材其微結構分析 68 4.2.4. 乾式混合法之EMI遮蔽效果 70 4.2.5. 乾式混合法所製備之Ni/ABS複材其微結構分析 71 4.2.6. Ni/ABS複材電阻率量測 74 4.2.7. 不同混煉程序之EMI遮蔽效果綜合討論 79 4.2.8. 結論 81 4.3. 奈米鐵微粒的合成機制與特性分析 81 4.3.1. 奈米鐵微粒的合成 81 4.3.2. pH值與成核促進劑對於奈米鐵微粒粒徑之影響 98 4.3.3. 奈米鐵微粒的磁性分析 100 4.3.4. 結論 104 4.4. 奈米鐵微粒於電極材料之應用 104 4.4.1. 奈米鐵電極之基本特性 104 4.4.2. 奈米鐵電極之首次放電特性 106 4.4.3. 奈米鐵電極之電容量變化 108 4.4.4. 奈米鐵電極電容量與比表面積之定量關係 112 4.4.5. 奈米鐵微粒改質對於電容量之影響 115 4.4.6. 結論 117 4.5. 旋轉塗佈法製造銀微粒佈位材料 118 4.5.1. 銀微粒佈位材料表面結構分析 122 4.5.2. 銀微粒佈位材料密度控制 125 4.5.3. 表面粒子密度與平均距離 127 4.5.4. 噴墨塗佈法佈位奈米銀微粒 128 4.5.5. 結論 132 4.6. 奈米銀微粒堆積薄膜之熱行為 133 4.6.1. 熱處理溫度與電阻率之關係 137 4.6.2. 結論 139 5. 總結 140 6. 參考資料 142 7. 附錄 155 7.1. 個人著作 155 7.1.1. 期刊論文 155 7.1.2. 會議論文 156 7.1.3. 其他著作 157 7.2. 聯胺之物質安全資料表 157

    (1) X. Shui, D.D.L. Chung, "Submicron nickel filaments made by electroplating carbon filaments as a new filler material for electromagnetic interference shielding", Journal of Electronic Materials 24 (1995) 107.
    (2) S. Shinagawa, Y. Kumagai, K. Urabe, "Conductive papers containing metallized polyester fibers for electromagnetic interference shielding", Journal of Porous Materials 6 (1999) 185.
    (3) M. Ichiki, J. Akedo, K. Mori, Y. Ishikawa, "Microstructure of nickel whiskers produced by the gas deposition method", Journal of Materials Science Letters 16 (1997) 531.
    (4) K.N. Yu, D.J. Kim, H.S. Chung, H.Z. Liang, "Dispersed rodlike nickel powder synthesized by modified polyol process", Materials Letters 57 (2003) 3992.
    (5) D. Farrell, S.A. Majetich, J.P. Wilcoxon, "Preparation and characterization of monodisperse Fe nanoparticles", Journal of Physical Chemistry B 107 (2003) 11022.
    (6) N. Xiaomin, S. Xiaobo, Z. Huagui, Z. Dongen, Y. Dandan, Z. Qingbiao, "Studies on the one-step preparation of iron nanoparticles in solution", Journal of Crystal Growth 275 (2005) 548.
    (7) F. Li, C. Vipulanandan, K.K. Mohanty, "Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene", Colloids and Surfaces A: Physicochemical and Engineering Aspects 223 (2003) 103.
    (8) H.S. Shin, H.J. Yang, S.B. Kim, M.S. Lee, "Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution", Journal of colloid and interface science 274 (2004) 89.
    (9) Y.K. Hong, H. Kim, G. Lee, W. Kim, J.I. Park, J. Cheon, J.Y. Koo, "Controlled two-dimensional distribution of nanoparticles by spin-coating method", Applied Physics Letters 80 (2002) 844.
    (10) Y.S. Cho, G.S. Choi, S.Y. Hong, D. Kim, "Carbon nanotube synthesis using a magnetic fluid via thermal chemical vapor deposition", Journal of Crystal Growth 243 (2002) 224.
    (11) 蔡明蒔, "銅化學機械研磨後清洗方法", 知識創新 3 (2004)
    (12) G.G. Lu, X.T. Li, H.C. Jiang, "Electrical and shielding properties of ABS resin filled with nickel-coated carbon fibers", Composites Science and Technology 56 (1996) 193.
    (13) X.P. Shui, D.D.L. Chung, "Submicron diameter nickel filaments and their polymer-matrix composites", Journal of Materials Science 35 (2000) 1773.
    (14) D. Markham, "Shielding: quantifying the shielding requirements for portable electronic design and providing new solutions by using a combination of materials and design", Materials & Design 21 (2000) 45.
    (15) C.Y. Huang, C.C. Wu, "The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites", European Polymer Journal 36 (2000) 2729.
    (16) S.S. Tzeng, F.Y. Chang, "EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites", Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 302 (2001) 258.
    (17) N.C. Das, T.K. Chaki, D. Khastgir, A. Chakraborty, "Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers", Journal of Applied Polymer Science 80 (2001) 1601.
    (18) C. Huang, C. Wu, "EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites", European Polymer Journal 36 (2000) 2729.
    (19) C. Huang, W. Mo, M. Roan, "Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber/ABS composites", Surface and Coatings Technology 184 (2004) 163.
    (20) W. Zeng, S.T. Tan, "Preparation and EMI shielding properties of nickel-coated PET fiber filled epoxy composites", Polymer Composites 27 (2006) 24.
    (21) R.M. Bagwell, J.M. McManaman, R.C. Wetherhold, "Short shaped copper fibers in an epoxy matrix: Their role in a multifunctional composite", Composites Science and Technology 66 (2006) 522.
    (22) Y. Choi, Y. Yoo, J. Kim, S. Kim, "A comparison of the corrosion resistance of Cu-Ni-stainless steel multilayers used for EMI shielding", Surface and Coatings Technology 201 (2006) 3775.
    (23) P.B. Jana, A.K. Mallick, S.K. De, "Electromagnetic interference shielding by carbon fibre-filled polychloroprene rubber composites", Composites 22 (1991) 451.
    (24) P.B. Jana, A.K. Mallick, S.K. De, "Effects of sample thickness and fiber aspect ratio on EMI shielding effectiveness of carbon fiber filled polychloroprene composites in the X-band frequency range", IEEE Transactions on Electromagnetic Compatibility 34 (1992) 478.
    (25) X. Luo, D.D.L. Chung, "Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites", Composites Part B:Engineering 30 (1999) 227.
    (26) N.C. Das, T.K. Chaki, D. Khastgir, A. Chakraborty, "Electromagnetic interference shielding effectiveness of conductive carbon black and carbon fiber-filled composites based on rubber and rubber blends", Advances in Polymer Technology 20 (2001) 226.
    (27) H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, H.S. Yoon, D.A. Pejakovic, J.W. Yoo, A.J. Epstein, "Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst", Applied Physics Letters 84 (2004) 589.
    (28) Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, "A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites", Journal of Nanoscience and Nanotechnology 5 (2005) 927.
    (29) N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, P.C. Eklund, "Electromagnetic Interference (EMI) shielding of single-walled carbon nanotube epoxy composites", Nano Letters 6 (2006) 1141.
    (30) C.Y. Huang, W.W. Mo, "Electromagnetic interference shielding effectiveness and mechanical sliding behavior for electroless nickel/phosphorous-poly(tetrafluoroethylene) codeposition on carbon fiber/acrylonitrile-butadiene-styrene composites", Journal of Applied Polymer Science 85 (2002) 1661.
    (31) B.R. Jarrett, M. Frendo, J. Vogan, A.Y. Louie, "Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging", Nanotechnology 18 (2007) 035603.
    (32) T. Kim, L. Reis, K. Rajan, M. Shima, "Magnetic behavior of iron oxide nanoparticle-biomolecule assembly", Journal of Magnetism and Magnetic Materials 295 (2005) 132.
    (33) S. Liu, X. Wei, M. Chu, J. Peng, Y. Xu, "Synthesis and characterization of iron oxide/polymer composite nanoparticles with pendent functional groups", Colloids and Surfaces B: Biointerfaces 51 (2006) 101.
    (34) J. Park, E. Lee, N. Hwang, M. Kang, C.K. Sung, Y. Hwang, J. Park, H. Noh, J. Kim, J. Park, T. Hyeon, "One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles", Angewandte Chemie - International Edition 44 (2005) 2872.
    (35) G. Salazar-Alvarez, M. Muhammed, A.A. Zagorodni, "Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution", Chemical Engineering Science 61 (2006) 4625.
    (36) X. Teng, H. Yang, "Synthesis of magnetic nanocomposites and alloys from platinum-iron oxide core-shell nanoparticles", Nanotechnology 16 (2005) 554.
    (37) K. Woo, J. Hong, S. Choi, H. Lee, J. Ahn, C.S. Kim, S.W. Lee, "Easy synthesis and magnetic properties of iron oxide nanoparticles", Chemistry of Materials 16 (2004) 2814.
    (38) S. Yu, G.M. Chow, "Synthesis of monodisperse iron oxide and iron/iron oxide core/shell nanoparticles via iron-oleylamine complex", Journal of Nanoscience and Nanotechnology 6 (2006) 2135.
    (39) F. Grandjean, R.P. Hermann, G.J. Long, S.R. Mishra, "A Mossbauer spectral study of some iron nitride-based nanocomposites prepared by ball milling", Journal of Magnetism and Magnetic Materials 292 (2005) 215.
    (40) L.Y. Dai, B. Cao, M. Zhu, "Comparison on refinement of iron powder by ball milling assisted by different external fields", Acta Metallurgica Sinica (English Letters) 19 (2006) 411.
    (41) H.G. Cha, Y.H. Kim, C.W. Kim, H.W. Kwon, Y.S. Kang, "Characterization and magnetic behavior of Fe and Nd-Fe-B nanoparticles by surfactant-capped high-energy ball mill", Journal of Physical Chemistry C 111 (2007) 1219.
    (42) K.T. Wu, Y.D. Yao, C.R.C. Wang, P.F. Chen, E.T. Yeh, "Magnetic field induced optical transmission study in an iron nanoparticle ferrofluid", Journal of Applied Physics 85 (1999) 5959.
    (43) A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, M. Sentis, "Surface nanostructuring of metals by laser irradiation: Effects of pulse duration, wavelength and gas atmosphere", Applied Physics A: Materials Science and Processing 79 (2004) 1433.
    (44) Happy, S.R. Mohanty, P. Lee, T.L. Tan, S.V. Springham, A. Patran, R.V. Ramanujan, R.S. Rawat, "Effect of deposition parameters on morphology and size of FeCo nanoparticles synthesized by pulsed laser ablation deposition", Applied Surface Science 252 (2006) 2806.
    (45) C.J. Choi, O. Tolochko, B.K. Kim, "Preparation of iron nanoparticles by chemical vapor condensation", Materials Letters 56 (2002) 289.
    (46) M. Chen, S. Yamamuro, D. Farrell, S.A. Majetich, "Gold-coated iron nanoparticles for biomedical applications", Journal of Applied Physics 93 (2003) 7551.
    (47) S. Veintemillas-Verdaguer, O. Bomati, M.P. Morales, P.E. Di Nunzio, S. Martelli, "Iron ultrafine nanoparticles prepared by aerosol laser pyrolysis", Materials Letters 57 (2003) 1184.
    (48) D.L. Huber, E.L. Venturini, J.E. Martin, P.P. Provencio, R.J. Patel, "Synthesis of highly magnetic iron nanoparticles suitable for field structuring using a beta-diketone surfactant", Journal of Magnetism and Magnetic Materials 278 (2004) 311.
    (49) C.T. Seip, C.J. O'Connor, "Fabrication and organization of self-assembled metallic nanoparticles formed in reverse micelles", Nanostructured Materials 12 (1999) 183.
    (50) C. Yang, J. Xing, Y. Guan, J. Liu, H. Liu, "Synthesis and characterization of superparamagnetic iron nanocomposites by hydrazine reduction", Journal of Alloys and Compounds 385 (2004) 283.
    (51) G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, "Chemistry of Borohydride Reduction of Iron(II) and Iron(III) Ions in Aqueous and Nonaqueous Media - Formation of Nanoscale Fe, Feb, and Fe2b Powders", Inorganic Chemistry 34 (1995) 28.
    (52) J. Lin, W.L. Zhou, A. Kumbhar, J. Wiemann, J.Y. Fang, E.E. Carpenter, C.J. O'Connor, "Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly", Journal of Solid State Chemistry 159 (2001) 26.
    (53) K.S. Chou, C.Y. Ren, "Synthesis of nanosized silver particles by chemical reduction method", Materials Chemistry and Physics 64 (2000) 241.
    (54) K.S. Chou, Y.S. Lai, "Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids", Materials Chemistry and Physics 83 (2004) 82.
    (55) H. Wang, X. Qiao, J. Chen, S. Ding, "Preparation of silver nanoparticles by chemical reduction method", Colloids and Surfaces A: Physicochemical and Engineering Aspects 256 (2005) 111.
    (56) H. Wang, X. Qiao, J. Chen, X. Wang, S. Ding, "Mechanisms of PVP in the preparation of silver nanoparticles", Materials Chemistry and Physics 94 (2005) 449.
    (57) K.S. Chou, K.C. Huang, "Studies on the chemical synthesis of nanosized nickel powder and its stability", Journal of Nanoparticle Research 3 (2001) 127.
    (58) D.-. Chen, X.-. He, "Synthesis of nickel ferrite nanoparticles by sol-gel method", Materials Research Bulletin 36 (2001) 1369.
    (59) K. Zaghib, K. Striebel, A. Guerfi, J. Shim, M. Armand, M. Gauthier, "LiFePO4/polymer/natural graphite: Low cost Li-ion batteries", Electrochimica Acta 50 (2004) 263.
    (60) S. Koike, K. Tatsumi, "Preparation and morphology of three-dimensional structured LiMn 2O4 films", Journal of Power Sources 146 (2005) 241.
    (61) Y.H. Rho, K. Dokko, K. Kanamura, "Li+ ion diffusion in LiMn2O4 thin film prepared by PVP sol-gel method", Journal of Power Sources 157 (2006) 471.
    (62) H.M. Wu, J.P. Tu, Y.F. Yuan, X.T. Chen, J.Y. Xiang, X.B. Zhao, G.S. Cao, "One-step synthesis LiMn2O4 cathode by a hydrothermal method", Journal of Power Sources 161 (2006) 1260.
    (63) V.S. Muralidharan, M. Ramakrishnan, G. Paruthimal Kalaignan, K. Gopalakrishnan, K.I. Vasu, "Assessment of performance characteristics of the nickel-iron cell", Journal of Power Sources 27 (1989) 311.
    (64) A.K. Shukla, M.K. Ravikumar, T.S. Balasubramanian, "Nickel/iron batteries", Journal of Power Sources 51 (1994) 29.
    (65) P. Periasamy, B.R. Babu, S.V. Iyer, "Performance characterization of sintered iron electrodes in nickel/iron alkaline batteries", Journal of Power Sources 62 (1996) 9.
    (66) H. Sakaebe, H. Uchino, M. Azuma, M. Shikano, S. Higuchi, "Cycleability of Ni-Fe hydroxides in nonaqueous electrolyte", Solid State Ionics 113-115 (1998) 35.
    (67) A.K. Shukla, S. Venugopalan, B. Hariprakash, "Nickel-based rechargeable batteries", Journal of Power Sources 100 (2001) 125.
    (68) C.A. Caldas, M.C. Lopes, I.A. Carlos, "The role of FeS and (NH4)2CO3 additives on the pressed type Fe electrode", Journal of Power Sources 74 (1998) 108.
    (69) K. Vijayamohanan, A.K. Shukla, S. Sathyanarayana, "Role of sulphide additives on the performance of alkaline iron electrodes", Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 289 (1990) 55.
    (70) T.S. Balasubramanian, A.K. Shukla, "Effect of metal-sulfide additives on charge/discharge reactions of the alkaline iron electrode", Journal of Power Sources 41 (1993) 99.
    (71) B.T. Hang, T. Watanabe, M. Egashira, I. Watanabe, S. Okada, J. Yamaki, "The effect of additives on the electrochemical properties of Fe/C composite for Fe/air battery anode", Journal of Power Sources 155 (2006) 461.
    (72) C.A.C. Souza, I.A. Carlos, M. Lopes, G.A. Finazzi, M.R.H. De Almeida, "Self-discharge of Fe-Ni alkaline batteries", Journal of Power Sources 132 (2004) 288.
    (73) C.S. Tong, S.D. Wang, Y.Y. Wang, C.C. Wan, "A Study of the Iron Electrode Structure of Ni-Fe Cell", Journal of the Electrochemical Society 129 (1982) 1173.
    (74) K.W. Cross, "Iron/palladium nanoparticle-catalyzed breakdown of trichloroethylene in dilute aqueous solution in a continuous reactor", Journal of Harbin Institute of Technology (New Series) 12 (2005) 134.
    (75) F. He, D. Zhao, "Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water", Environmental Science and Technology 39 (2005) 3314.
    (76) H. Lien, W. Zhang, "Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles", Journal of Environmental Engineering 131 (2005) 4.
    (77) L. Li, M. Fan, R.C. Brown, J. Van Leeuwen, J. Wang, W. Wang, Y. Song, P. Zhang, "Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review", Critical Reviews in Environmental Science and Technology 36 (2006) 405.
    (78) X. Li, D.W. Elliott, W. Zhang, "Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects", Critical Reviews in Solid State and Materials Sciences 31 (2006) 111.
    (79) P.G. Tratnyek, R.L. Johnson, "Nanotechnologies for environmental cleanup", Nano Today 1 (2006) 44.
    (80) W. Zhang, X. Quan, J. Wang, Z. Zhang, S. Chen, "Rapid and complete dechlorination of PCP in aqueous solution using Ni-Fe nanoparticles under assistance of ultrasound", Chemosphere 65 (2006) 58.
    (81) H. Lien, Y. Jhuo, L. Chen, "Effect of heavy metals on dechlorination of carbon tetrachloride by iron nanoparticles", Environmental Engineering Science 24 (2007) 21.
    (82) M. L.J , T. P.G , "Reductive dehalogenation of chlorinated methanes by iron metal", Environmental Science and Technology 28 (1994) 2045.
    (83) A.L. Roberts, L.A. Totten, W.A. Arnold, D.R. Burris, T.J. Campbell, "Reductive elimination of chlorinated ethylenes by zero-valent metals", Environmental Science and Technology 30 (1996) 2654.
    (84) W. Chuan-Bao , Z. Wei-Xian , "Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs", Environmental Science and Technology 31 (1997) 2154.
    (85) S. Mornet, S. Vasseur, F. Grasset, E. Duguet, "Magnetic nanoparticle design for medical diagnosis and therapy", Journal of Materials Chemistry 14 (2004) 2161.
    (86) D.K. Kim, Y. Zhang, W. Voit, K.V. Rao, J. Kehr, B. Bjelke, M. Muhammed, "Superparamagnetic iron oxide nanoparticles for bio-medical applications", Scripta Materialia 44 (2001) 1713.
    (87) M.P. Morales, O. Bomati-Miguel, Perez de Alejo, R., J. Ruiz-Cabello, S. Veintemillas-Verdaguer, K. O'Grady, "Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis", Journal of Magnetism and Magnetic Materials 266 (2003) 102.
    (88) F. Cheng, C. Su, Y. Yang, C. Yeh, C. Tsai, C. Wu, M. Wu, D. Shieh, "Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications", Biomaterials 26 (2005) 729.
    (89) E.H. Kim, H.S. Lee, B.K. Kwak, B. Kim, "Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent", Journal of Magnetism and Magnetic Materials 289 (2005) 328.
    (90) H. Lee, H. Shao, Y. Huang, B. Kwak, "Synthesis of MRI contrast agent by coating superparamagnetic iron oxide with chitosan", IEEE Transactions on Magnetics 41 (2005) 4102.
    (91) S. Mornet, J. Portier, E. Duguet, "A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran", Journal of Magnetism and Magnetic Materials 293 (2005) 127.
    (92) D. Shieh, F. Cheng, C. Su, C. Yeh, M. Wu, Y. Wu, C. Tsai, C. Wu, D. Chen, C. Chou, "Aqueous dispersions of magnetite nanoparticles with NH3 + surfaces for magnetic manipulations of biomolecules and MRI contrast agents", Biomaterials 26 (2005) 7183.
    (93) Y. Qiang, J. Antony, A. Sharma, J. Nutting, D. Sikes, D. Meyer, "Iron/iron oxide core-shell nanoclusters for biomedical applications", Journal of Nanoparticle Research 8 (2006) 489.
    (94) 馬遠榮, 施政宏, "奈米碳管介紹", 國立東華大學網頁資料
    (95) M. Keidar, A.M. Waas, "On the conditions of carbon nanotube growth in the arc discharge", Nanotechnology 15 (2004) 1571.
    (96) H. Li, L. Guan, Z. Shi, Z. Gu, "Direct Synthesis of High Purity Single-Walled Carbon Nanotube Fibers by Arc Discharge", Journal of Physical Chemistry B 108 (2004) 4573.
    (97) T. Yoshimura, Y. Yamashita, K. Inami, H. Kato, T. Tsutsumoto, "Production of carbon mesocell by arc electric discharge", Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 43 (2004) 1655.
    (98) R.L. Vander Wal, G.M. Berger, T.M. Ticich, "Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation", Applied Physics A: Materials Science and Processing 77 (2003) 885.
    (99) S. Arepalli, W.A. Holmes, P. Nikolaev, V.G. Hadjiev, C.D. Scott, "A parametric study of single-wall carbon nanotube growth by laser ablation", Journal of Nanoscience and Nanotechnology 4 (2004) 762.
    (100) G.X. Chen, M.H. Hong, Q. He, W.Z. Chen, H.I. Elim, W. Ji, T.C. Chong, "Formation, structure and nonlinear optical properties of carbon nanoparticles synthesized by pulsed laser ablation", Applied Physics A: Materials Science and Processing 79 (2004) 1079.
    (101) E.F. Kukovitsky, S.G. L'vov, N.A. Sainov, V.A. Shustov, "CVD growth of carbon nanotube films on nickel substrates", Applied Surface Science 215 (2003) 201.
    (102) B.Q. Wei, R. Vajtai, P.M. Ajayan, "Sequence growth of carbon fibers and nanotube networks by CVD process [3]", Carbon 41 (2003) 185.
    (103) W.I. Milne, K.B.K. Teo, G.A.J. Amaratunga, P. Legagneux, L. Gangloff, J.P. Schnell, V. Semet, V.T. Binh, O. Groening, "Carbon nanotubes as field emission sources", Journal of Materials Chemistry 14 (2004) 933.
    (104) K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, "Uniform patterned growth of carbon nanotubes without surface carbon", Applied Physics Letters 79 (2001) 1534.
    (105) F. Liu, Y. Chang, F. Ko, T. Chu, B. Dai, "Rapid fabrication of high quality self-assembled nanometer gold particles by spin coating method", 67-68 (2003) 702.
    (106) D. Xia, A. Biswas, D. Li, S.R.J. Brueck, "Directed self-assembly of silica nanoparticles into nanometer-scale patterned surfaces using spin-coating", Advanced Materials 16 (2004) 1427.
    (107) D. Xia, S.R.J. Brueck, "Lithographically directed deposition of silica nanoparticles using spin coating", Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures 22 (2004) 3415.
    (108) M. Berber, V. Bulto, R. Kliss, H. Hahn, "Transparent nanocrystalline ZnO films prepared by spin coating", Scripta Materialia 53 (2005) 547.
    (109) T.R. Giraldi, C. Ribeiro, M.T. Escote, T.G. Conti, A.J. Chiquito, E.R. Leite, E. Longo, J.A. Varela, "Deposition of controlled thickness ultrathin SnO2:Sb films by spin-coating", Journal of Nanoscience and Nanotechnology 6 (2006) 3849.
    (110) E.R. Leite, E.J.H. Lee, C. Ribeiro, E. Longo, "Controlled thickness deposition of ultrathin ceramic films by spin coating", Journal of the American Ceramic Society 89 (2006) 2016.
    (111) S. Schaefers, L. Rast, A. Stanishevsky, "Electroless silver plating on spin-coated silver nanoparticle seed layers", Materials Letters 60 (2006) 706.
    (112) S. Magdassi, A. Bassa, Y. Vinetsky, A. Kamyshny, "Silver nanoparticles as pigments for water-based ink-jet inks", Chemistry of Materials 15 (2003) 2208.
    (113) N.R. Bieri, J. Chung, S.E. Haferl, D. Poulikakos, C.P. Grigoropoulos, "Microstructuring by printing and laser curing of nanoparticle solutions", Applied Physics Letters 82 (2003) 3529.
    (114) S.B. Fuller, E.J. Wilhelm, J.A. Jacobson, "Ink-jet printed nanoparticle microelectromechanical systems", Journal of Microelectromechanical Systems 11 (2002) 54.
    (115) D. Kim, S. Jeong, B.K. Park, J. Moon, "Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions", Applied Physics Letters 89 (2006) 264101.
    (116) J.B. Szczech, C.M. Megaridis, D.R. Gamota, J. Zhang, "Fine-line conductor manufacturing using drop-on-demand PZT printing technology", Ieee Transactions on Electronics Packaging Manufacturing 25 (2002) 26.
    (117) J.B. Szczech, C.M. Megaridis, J. Zhang, D.R. Gamota, "Ink jet processing of metallic nanoparticle suspensions for electronic circuitry fabrication", Microscale Thermophysical Engineering 8 (2004) 327.
    (118) 郭宏達, "鎳絲的合成及其在電磁波遮蔽材料上的應用", 國立清華大學碩士論文 (2002)
    (119) 黃楷熒, "化學還原法生成鎳絲及其反應機制探討", 國立清華大學碩士論文 (2004)
    (120) E. Ganani, B.G. Higgins, R.L. Powell, "Monitoring the initial phase of a slow curing epoxy through the dynamic viscoelastic properties", Polymer Engineering and Science 26 (1986) 1563.
    (121) H.H. Lee, H.T. Kuo, K.S. Chou, "Formation of crystalline nickel fibers by chemical reduction in the presence of a magnetic field", Journal of the Chinese Institute of Chemical Engineers 34 (2003) 327.
    (122) Y. Sun, X. Li, J. Cao, W. Zhang, H.P. Wang, "Characterization of zero-valent iron nanoparticles", Advances in Colloid and Interface Science 120 (2006) 47.
    (123) C.H. Griffiths, M.P. O'Horo, T.W. Smith, "Structure, magnetic characterization, and oxidation of colloidal iron dispersions", Journal of Applied Physics 50 (1979) 7108.
    (124) S. Gangopadhyay, G.C. Hadjipanayis, C.M. Sorensen, K.J. Klabunde, "Magnetism in ultrafine Fe and Co particles", IEEE Transactions on Magnetics 29 (1993) 2602.
    (125) C. Chakkaravarthy, P. Periasamy, S. Jegannathan, K.I. Vasu, "Nickel/iron battery", Journal of Power Sources 35 (1991) 21.
    (126) A.G. Emsile, F.T. Bonner, L.G. Peck, "Flow of a viscous liquid on a rotating disk", 29 (1958) 858.
    (127) D. Meyerhofer, "Characteristics of resist films produced by spinning", Journal of Applied Physics 49 (1978) 3993.
    (128) Q. Jiang, S. Zhang, M. Zhao, "Size-dependent melting point of noble metals", Materials Chemistry and Physics 82 (2003) 225.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE