研究生: |
楊斯閔 Yang, Sz-Min |
---|---|
論文名稱: |
二氧化鈦光電極結構對可撓式染料敏化太陽能電池元件效率之影響 Effects of Microstructure of TiO2 Photoelectrodes on Efficiency of Flexible Dye-sensitized Solar Cells |
指導教授: | 開執中 |
口試委員: |
李欣芳
歐陽汎怡 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 染料敏化太陽能電池 、可撓式基板 、二氧化鈦 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以五種不同粒徑大小之二氧化鈦奈米顆粒(P25、A100、500 nm、800 nm與1000 nm),製備低溫無黏著劑之二氧化鈦漿料,並以刮刀塗佈法與加壓製程,於ITO/PEN基板上製作出不同結構與組成之二氧化鈦光電極,應用於可撓式染料敏化太陽能電池,在單層結構中,100 nm顆粒的添加可以增加二氧化鈦光電極的入射光路徑,進而提升光捕獲率;在雙層結構中,使用粒徑800 nm的散射顆粒,配合P25的添加,可以形成同時具備染料吸附力與散射能力的散射層結構,提升元件整體的電子生成效率與光捕獲率;於三層結構之中,配合1000 nm二氧化鈦球的添加,可以進一步將穿透前兩層電極的穿透光反射回前兩層中,達到更佳的光捕獲率與利用效率。本研究並使用鈦金屬箔為對電極基板,以熱裂解法將鉑原子由氯鉑酸前驅物還原至鈦基板上,四氯化鈦之前處理影響亦在文中討論,最後加入化學還原法與電鍍法之低溫還原製程於鈦對電極作為比較。
二氧化鈦光電極之光學特性以紫外光-可見光光譜儀進行分析,元件之光電特性則由量子效率量測儀與太陽光模擬器進行量測,在經過混合不同比例之二氧化鈦顆粒的測試後,可以有效增加二氧化鈦光電極之光捕獲率,以優化過之ITO/PEN基板二氧化鈦光電極與熱裂解製程之鈦金屬對電極組成之可撓式染料敏化太陽能電池,可以在1 sun之光強度下達到7.56%之光電轉換效率,而優化過之二氧化鈦光電極與電鍍之鈦金屬對電極所組成之可撓式染料敏化太陽能電池,可以在1 sun之光強度下達到7.65%之光電轉換效率。
1. Cahen, D., G. Hodes, M. Grätzel, J.F. Guillemoles, and I. Riess, Nature of Photovoltaic Action in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2000. 104(9): p. 2053-2059.
2. Grätzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344.
3. Hagfeldt, A., G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-sensitized solar cells. Chemical reviews, 2010. 110(11): p. 6595-6663.
4. Søndergaard, R.R., M. Hösel, and F.C. Krebs, Roll-to-Roll fabrication of large area functional organic materials. Journal of Polymer Science Part B: Polymer Physics, 2013. 51(1): p. 16-34.
5. NREL, Best Research-Cell Efficiencies, 2014.
6. Grätzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1): p. 3-14.
7. The Graetzel cells. Available from: http://solar.calfinder.com/blog/solar-research/third-gen-solar-inventor-wins-1.07-million-millennium-prize.
8. Costa, C. Sony Unveils Solar Lamps Shades. Available from: http://www.gadgetreview.com/2008/12/sony-unveils-solar-lamps-shades.html.
9. Hoffert, M. Correlation of Earth average temperature with carbon dioxide and global population. Available from: http://cnx.org/content/m32935/latest/.
10. Tributsch, H., REACTION OF EXCITED CHLOROPHYLL MOLECULES AT ELECTRODES AND IN PHOTOSYNTHESIS*. Photochemistry and Photobiology, 1972. 16(4): p. 261-269.
11. O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
12. Barbé, C.J., F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. Journal of the American Ceramic Society, 1997. 80(12): p. 3157-3171.
13. Nazeeruddin, M.K., F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society, 2005. 127(48): p. 16835-16847.
14. Yella, A., H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 2011. 334(6056): p. 629-634.
15. Hsu, C.-Y., Y.-C. Chen, R.Y.-Y. Lin, K.-C. Ho, and J.T. Lin, Solid-state dye-sensitized solar cells based on spirofluorene (spiro-OMeTAD) and arylamines as hole transporting materials. Phys. Chem. Chem. Phys, 2012. 14: p. 14099-14109.
16. Péchy, P., T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, and M. Grätzel, Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society, 2001. 123(8): p. 1613-1624.
17. (UNSW), U.o.N.S.W., Silicon Solar Cell Texture Structure, 2011.
18. Yamaguchi, T., N. Tobe, D. Matsumoto, T. Nagai, and H. Arakawa, Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Solar Energy Materials and Solar Cells, 2010. 94(5): p. 812-816.
19. Sayama, K., H. Sugihara, and H. Arakawa, Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye. Chemistry of Materials, 1998. 10(12): p. 3825-3832.
20. Katoh, R., A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, and M. Tachiya, Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films. The Journal of Physical Chemistry B, 2004. 108(15): p. 4818-4822.
21. Quintana, M., T. Edvinsson, A. Hagfeldt, and G. Boschloo, Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime. The Journal of Physical Chemistry C, 2006. 111(2): p. 1035-1041.
22. Zhang, Q., C.S. Dandeneau, X. Zhou, and G. Cao, ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials, 2009. 21(41): p. 4087-4108.
23. Ito, S., P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S.M. Zakeeruddin, A. Kay, M.K. Nazeeruddin, and M. Gratzel, Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells. Chemical Communications, 2005(34): p. 4351-4353.
24. Park, N.G., J. van de Lagemaat, and A.J. Frank, Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells. The Journal of Physical Chemistry B, 2000. 104(38): p. 8989-8994.
25. Wang, Z.-S., H. Kawauchi, T. Kashima, and H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 2004. 248(13–14): p. 1381-1389.
26. Park, N.G., G. Schlichthörl, J. van de Lagemaat, H.M. Cheong, A. Mascarenhas, and A.J. Frank, Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4. The Journal of Physical Chemistry B, 1999. 103(17): p. 3308-3314.
27. Sommeling, P.M., B.C. O'Regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, J.J.T. Smits, J.M. Kroon, and J.A.M. van Roosmalen, Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2006. 110(39): p. 19191-19197.
28. O'Regan, B.C., J.R. Durrant, P.M. Sommeling, and N.J. Bakker, Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit. The Journal of Physical Chemistry C, 2007. 111(37): p. 14001-14010.
29. Knorr, F.J., D. Zhang, and J.L. McHale, Influence of TiCl4 Treatment on Surface Defect Photoluminescence in Pure and Mixed-Phase Nanocrystalline TiO2. Langmuir, 2007. 23(17): p. 8686-8690.
30. Oskam, G., B.V. Bergeron, G.J. Meyer, and P.C. Searson, Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells. The Journal of Physical Chemistry B, 2001. 105(29): p. 6867-6873.
31. Galoppini, E., J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, Fast Electron Transport in Metal Organic Vapor Deposition Grown Dye-sensitized ZnO Nanorod Solar Cells. The Journal of Physical Chemistry B, 2006. 110(33): p. 16159-16161.
32. Hoshikawa, T., T. Ikebe, R. Kikuchi, and K. Eguchi, Effects of electrolyte in dye-sensitized solar cells and evaluation by impedance spectroscopy. Electrochimica Acta, 2006. 51(25): p. 5286-5294.
33. Huang, S.Y., G. Schlichthörl, A.J. Nozik, M. Grätzel, and A.J. Frank, Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells. The Journal of Physical Chemistry B, 1997. 101(14): p. 2576-2582.
34. Watson, D.F. and G.J. Meyer, Cation effects in nanocrystalline solar cells. Coordination Chemistry Reviews, 2004. 248(13–14): p. 1391-1406.
35. Koops, S.E., B.C. O’Regan, P.R.F. Barnes, and J.R. Durrant, Parameters Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009. 131(13): p. 4808-4818.
36. Ito, S., T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, and M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008. 516(14): p. 4613-4619.
37. Hauch, A. and A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta, 2001. 46(22): p. 3457-3466.
38. Chen, C.-M., C.-H. Chen, and T.-C. Wei, Chemical deposition of platinum on metallic sheets as counterelectrodes for dye-sensitized solar cells. Electrochimica Acta, 2010. 55(5): p. 1687-1695.
39. Fang, X., T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 2004. 570(2): p. 257-263.
40. Wang, G., R. Lin, Y. Lin, X. Li, X. Zhou, and X. Xiao, A novel high-performance counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2005. 50(28): p. 5546-5552.
41. Hao, S., J. Wu, J. Lin, and Y. Huang, Modification of photocathode of dye-sensitized nanocrystalline solar cell with platinum by vacuum coating, thermal decomposition and electroplating. Composite Interfaces, 2006. 13(8-9): p. 899-909.
42. Papageorgiou, N., W.F. Maier, and M. Grätzel, An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media. Journal of The Electrochemical Society, 1997. 144(3): p. 876-884.
43. Papageorgiou, N., Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coordination Chemistry Reviews, 2004. 248(13–14): p. 1421-1446.
44. Kim, S.-S., Y.-C. Nah, Y.-Y. Noh, J. Jo, and D.-Y. Kim, Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells. Electrochimica Acta, 2006. 51(18): p. 3814-3819.
45. Yoon, C.H., R. Vittal, J. Lee, W.-S. Chae, and K.-J. Kim, Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode. Electrochimica Acta, 2008. 53(6): p. 2890-2896.
46. Li, P., J. Wu, J. Lin, M. Huang, Z. Lan, and Q. Li, Improvement of performance of dye-sensitized solar cells based on electrodeposited-platinum counter electrode. Electrochimica Acta, 2008. 53(12): p. 4161-4166.
47. Chen, L., W. Tan, J. Zhang, X. Zhou, X. Zhang, and Y. Lin, Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells. Electrochimica Acta, 2010. 55(11): p. 3721-3726.
48. Sun, K., B. Fan, and J. Ouyang, Nanostructured Platinum Films Deposited by Polyol Reduction of a Platinum Precursor and Their Application as Counter Electrode of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2010. 114(9): p. 4237-4244.
49. Cho, S.J. and J. Ouyang, Attachment of Platinum Nanoparticles to Substrates by Coating and Polyol Reduction of A Platinum Precursor. The Journal of Physical Chemistry C, 2011. 115(17): p. 8519-8526.
50. Cho, S.J., C.Y. Neo, X. Mei, and J. Ouyang, Platinum nanoparticles deposited on substrates by solventless chemical reduction of a platinum precursor with ethylene glycol vapor and its application as highly effective electrocatalyst in dye-sensitized solar cells. Electrochimica Acta, 2012. 85(0): p. 16-24.
51. Song, M.Y., K.N. Chaudhari, J. Park, D.-S. Yang, J.H. Kim, M.-S. Kim, K. Lim, J. Ko, and J.-S. Yu, High efficient Pt counter electrode prepared by homogeneous deposition method for dye-sensitized solar cell. Applied Energy, 2012. 100(0): p. 132-137.
52. Olsen, E., G. Hagen, and S. Eric Lindquist, Dissolution of platinum in methoxy propionitrile containing LiI/I2. Solar Energy Materials and Solar Cells, 2000. 63(3): p. 267-273.
53. Kay, A. and M. Grätzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 1996. 44(1): p. 99-117.
54. Saito, Y., W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, I−/I3− redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1–3): p. 153-157.
55. Murakami, T.N. and M. Grätzel, Counter electrodes for DSC: Application of functional materials as catalysts. Inorganica Chimica Acta, 2008. 361(3): p. 572-580.
56. Wang, M., A.M. Anghel, B. Marsan, N.-L. Cevey Ha, N. Pootrakulchote, S.M. Zakeeruddin, and M. Grätzel, CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009. 131(44): p. 15976-15977.
57. Jin, H.-Y., J.-Y. Kim, J. Ah Lee, K. Lee, K. Yoo, D.-K. Lee, B. Kim, J. Young Kim, H. Kim, H. Jung Son, J. Kim, J. Ah Lim, and M. Jae Ko, Rapid sintering of TiO2 photoelectrodes using intense pulsed white light for flexible dye-sensitized solar cells. Applied Physics Letters, 2014. 104(14): p. -.
58. Uchida, S., M. Tomiha, H. Takizawa, and M. Kawaraya, Flexible dye-sensitized solar cells by 28 GHz microwave irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1–3): p. 93-96.
59. Murakami, T.N., Y. Kijitori, N. Kawashima, and T. Miyasaka, Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1–3): p. 187-191.
60. Zhang, D., T. Yoshida, and H. Minoura, Low Temperature Synthesis of Porous Nanocrystalline TiO<SUB>2</SUB> Thick Film for Dye-Sensitized Solar Cells by Hydrothermal Crystallization. Chemistry Letters, 2002. 31(9): p. 874-875.
61. Zhang, D., T. Yoshida, and H. Minoura, Low-Temperature Fabrication of Efficient Porous Titania Photoelectrodes by Hydrothermal Crystallization at the Solid/Gas Interface. Advanced Materials, 2003. 15(10): p. 814-817.
62. Yamaguchi, T., N. Tobe, D. Matsumoto, and H. Arakawa, Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes. Chemical Communications, 2007(45): p. 4767-4769.
63. Ma, T., X. Fang, M. Akiyama, K. Inoue, H. Noma, and E. Abe, Properties of several types of novel counter electrodes for dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2004. 574(1): p. 77-83.
64. Miettunen, K., J. Halme, M. Toivola, and P. Lund, Initial Performance of Dye Solar Cells on Stainless Steel Substrates. The Journal of Physical Chemistry C, 2008. 112(10): p. 4011-4017.
65. Toivola, M., F. Ahlskog, and P. Lund, Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures. Solar Energy Materials and Solar Cells, 2006. 90(17): p. 2881-2893.
66. Kim, J.-M. and S.-W. Rhee, Counter Electrode System of Pt on Stainless Steel (SS) for Electron Injection into Iodide Redox Couple. Journal of The Electrochemical Society, 2012. 159(1): p. B6-B11.
67. Toivola, M., J. Halme, K. Miettunen, K. Aitola, and P.D. Lund, Nanostructured dye solar cells on flexible substrates—Review. International Journal of Energy Research, 2009. 33(13): p. 1145-1160.
68. Tachibana, Y., K. Hara, K. Sayama, and H. Arakawa, Quantitative Analysis of Light-Harvesting Efficiency and Electron-Transfer Yield in Ruthenium-Dye-Sensitized Nanocrystalline TiO2 Solar Cells. Chemistry of Materials, 2002. 14(6): p. 2527-2535.
69. Wooh, S., H. Yoon, J.-H. Jung, Y.-G. Lee, J.H. Koh, B. Lee, Y.S. Kang, and K. Char, Efficient Light Harvesting with Micropatterned 3D Pyramidal Photoanodes in Dye-Sensitized Solar Cells. Advanced Materials, 2013. 25(22): p. 3111-3116.
70. Wu, W.-Q., Y.-F. Xu, H.-S. Rao, C.-Y. Su, and D.-B. Kuang, Trilayered Photoanode of TiO2 Nanoparticles on a 1D–3D Nanostructured TiO2-Grown Flexible Ti Substrate for High-Efficiency (9.1%) Dye-Sensitized Solar Cells with Unprecedentedly High Photocurrent Density. The Journal of Physical Chemistry C, 2014.
71. Sauvage, F., D. Chen, P. Comte, F. Huang, L.-P. Heiniger, Y.-B. Cheng, R.A. Caruso, and M. Graetzel, Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous TiO2 Beads Achieve Power Conversion Efficiencies Over 10%. ACS Nano, 2010. 4(8): p. 4420-4425.
72. Kim, Y.J., M.H. Lee, H.J. Kim, G. Lim, Y.S. Choi, N.-G. Park, K. Kim, and W.I. Lee, Formation of Highly Efficient Dye-Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO2 Spheres. Advanced Materials, 2009. 21(36): p. 3668-3673.
73. Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003. 4(2): p. 145-153.
74. Hara, K., H. Sugihara, L.P. Singh, A. Islam, R. Katoh, M. Yanagida, K. Sayama, S. Murata, and H. Arakawa, New Ru(II) phenanthroline complex photosensitizers having different number of carboxyl groups for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2001. 145(1–2): p. 117-122.
75. Nazeeruddin, M.K., A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 1993. 115(14): p. 6382-6390.
76. Desilvestro, J., M. Graetzel, L. Kavan, J. Moser, and J. Augustynski, Highly efficient sensitization of titanium dioxide. Journal of the American Chemical Society, 1985. 107(10): p. 2988-2990.
77. Wu, J., Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, and Y. Huang, Progress on the electrolytes for dye-sensitized solar cells. Pure and Applied Chemistry, 2008. 80: p. 2241-2258.
78. Pasquier, A.D., M. Stewart, T. Spitler, and M. Coleman, Aqueous coating of efficient flexible TiO2 dye solar cell photoanodes. Solar Energy Materials and Solar Cells, 2009. 93(4): p. 528-535.
79. Wang, P., S.M. Zakeeruddin, R. Humphry-Baker, J.E. Moser, and M. Grätzel, Molecular-Scale Interface Engineering of TiO2 Nanocrystals: Improve the Efficiency and Stability of Dye-Sensitized Solar Cells. Advanced Materials, 2003. 15(24): p. 2101-2104.
80. Grätzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1–3): p. 3-14.
81. Nazeeruddin, M.K., E. Baranoff, and M. Grätzel, Dye-sensitized solar cells: A brief overview. Solar Energy, 2011. 85(6): p. 1172-1178.
82. Han, L., N. Koide, Y. Chiba, and T. Mitate, Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters, 2004. 84(13): p. 2433-2435.
83. Han, L., N. Koide, Y. Chiba, A. Islam, and T. Mitate, Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. Comptes Rendus Chimie, 2006. 9(5–6): p. 645-651.
84. Wang, Q., J.-E. Moser, and M. Grätzel, Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2005. 109(31): p. 14945-14953.
85. Air mass, in http://solarwiki.ucdavis.edu/The_Science_of_Solar/Solar_Basics/B._Basics_of_the_Sun/V._Air_Mass.
86. Vargas, W.E., Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering. Journal of Applied Physics, 2000. 88(7): p. 4079-4084.
87. Hore, S., C. Vetter, R. Kern, H. Smit, and A. Hinsch, Influence of scattering layers on efficiency of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006. 90(9): p. 1176-1188.
88. Liu, H., L. Liang, T. Peng, H.F. Mehnane, B. Sebo, S. Bai, Z. Yu, W. Yu, W. Liu, S. Guo, and X. Zhao, Enhance the performance of dye-sensitized solar cells by balancing the light harvesting and electron collecting efficiencies of scattering layer based photoanodes. Electrochimica Acta, 2014. 132(0): p. 25-30.
89. Koo, H.-J., J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, Size-dependent scattering efficiency in dye-sensitized solar cell. Inorganica Chimica Acta, 2008. 361(3): p. 677-683.
90. Kim, E.Y., S. Yu, J.H. Moon, S.M. Yoo, C. Kim, H.K. Kim, and W.I. Lee, Formation of double-layered TiO2 structures with selectively-positioned molecular dyes for efficient flexible dye-sensitized solar cells. Electrochimica Acta, 2013. 111(0): p. 261-267.