研究生: |
孫于雯 Sun, Yu Wen |
---|---|
論文名稱: |
芘菲衍生物之主體材料應用於 藍色有機發光二極體 Host Material Based on Phenathrene Derivatives End-Capped with Pyrene Groups for Blue Organic Light-Emitting Diodes |
指導教授: |
鄭建鴻
Cheng, Chien Hong |
口試委員: |
周鶴修
Chou, Ho Hsiu 林皓武 Lin, Hao Wu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 有機發光二極體 、藍色 、主體材料 、效率 、壽命 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,使用四種芘菲衍生物PPyP、PTP、TPyP、TTP作為主體材料,並搭配BCzVBi、TSTA、DPASP以及DMASP等藍色客體材料製作一系列的OLED元件,透過傳輸層與元件結構厚度的調整,製作出高電激發光效率及壽命長的深藍光螢光元件。
以BCzVBi摻雜於PPyP、PTP、TPP中的薄膜固態量子效率均大於90 %,TPyP亦達89 %,說明主客體材料間能有效的能量轉移,以PTP摻雜5%客體材料作為發光層搭配最佳化元件結構,最大外部量子效率均為10 %以上,尤以摻雜5 % DPASP作為發光層之元件1T,最大外部量子效率高達11.4 %,最大發光效率與發光功率效率分別為17.5 cd/A與12.8 lm/W,最大亮度表現為91058 cd/m2,CIE色度座標為(0.14, 0.19),從暫態電激發光實驗發現以PTP作為發光層材料的元件,可以透過三重態激發子間的碰撞進行三重態-三重態淬熄,將三重激態上轉換至單重激態,然後能量轉移至客體材料上放出生命期較長的延遲螢光,然而並非提高元件外部量子效率的主要因素。從水平極化光譜中發現以四種主體摻雜5 % BCzVBi的薄膜其分子排列水平,使放光方向近乎垂直基板,因而提高元件出光率,使元件外部量子效率可以超過理論值5 %。
以5 % DMASP摻雜於PPyP中作為發光層,5 % MoO3摻雜於HAT-CN作為p類型電洞注入層,Bebq2: Liq以3:7比例共蒸鍍作為n類型的電子傳輸層增加了元件的穩定性,得到較長的壽命表現,在500 cd/m2為起始亮度的壽命可達13515小時.CIE色度坐標為(0.15, 0.21),最大外部量子效率為6.7 %、最大發光效率19.6 cd/A、最大發光功率效率11.7 lm/W;使用TSTA的元件,在500 cd/m2為起始亮度的壽命亦有12576小時,元件的CIE色度坐標(0.14, 0.18),最大外部量子效率為7.8 %、最大發光效率15.0 cd/A、最大發光功率效率12.1 lm/W。
In the thesis, we used PPyP, PTP, TPyP, TTP as host materials doped with BCzVBi, TSTA, DPASP, and DMASP repectively, for the blue fluorescent emitters. With the suitable transporting materials and device layers, we have developed the deep-blue OLEDs with highly electrolu-minescence efficiency and long operation lifetime.
Because the quantum yields of PPyP, PTP and TTP film doped with BCzVBi are above 90 % and TPyP film is also almost 90 %, energy transfer between host and dopant is efficient. Extraordinary external quantum efficiency (E.Q.E.) above 10 % is achieved in the device hosted by PTP, especially the DPASP-doped device 1T, showing the maximum E.Q.E. of 11.4 %, the current efficiency of 17.5 cd/A and the power efficie-ncy of 12.8 lm/W, the maximum luminescence of 91058 cd/m2, with the CIE coordinates of (0.14, 0.19). From the transient EL spectrum, we found that PTP-based devices showed the microsecond-scale delayed fluor-escence. Two triplet excitons formed a singlet exciton via triplet-triplet annihilation among excited PTP molecules, and singlet excitons were transfer to dopant for efficient delayed fluorescent. However, this is not the crucial reason why the E.Q.E. of device 1I、1P-1R exceeded the limited efficiency of fluorescent OLEDs. From the angle dependent p-polaried PL spectrum, the measurement reveals the transition dipole moments of the host materials doped with 5 % BCzVBi emitter is almost horizontal with a horiaontal factor 𝜣 of above 0.85, resulting in the increa-seing of the light-outcoupling factor, and the enhancement of the E.Q.E. exceeding the limited efficiency of fluorescent OLEDs.
By using PPyP doped with 5 % DMASP as emission layer, HAT-CN doped with 5 % MoO3 as the p-typed HIL, Bebq2:Liq = 3:7 as the n-typed ETL, the device 2T structure increased of the device stability, resulting in the longer lifetime of 13515 hours (L0 = 500 nits) with the CIE coordinates of (0.15, 0.21), and the device showed the maximum E.Q.E. of 6.7 %, the current efficiency of 19.6 cd/A and the power efficiency of 11.7 lm/W. The TSTA-doped device 2U also had the lifetime of 12586 hours (L0= 500 nits) with the deeper blue CIE coordinates of (0.14, 0.18), and the device showed the maximum E.Q.E. of 7.8 %, the current efficiency of 15.0 cd/A and the power efficiency of 12.1 lm/W.
[1]C. W. Tang, S. A. Van Slyke, Appl. Phys. Lett., 1987, 51, 913
[2]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature. 1990, 347, 539.
[3]審譯:林敬二, 林宗義,儀器分析第四版, 1994, 上冊, 174.
[4]C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys., 2001, 90, 5048.
[5]C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. ,2001, 79, 2082.
[6]M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S.R. Forrest, Nature, 1998, 395, 151.
[7]a) V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, Phys. Rev. B, 1998, 58, 3730.; b) M.-H. Lu, J. C. Sturm, J. Appl. Phys., 2002, 91, 595.
[8]G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E. Thompson, Opt. Lett., 1997, 22, 396.
[9]C. W. Tang, S. A. Vanslyke, C. H. Chen, J. Appl. Phys., 1989, 65, 3610.
[10]T. Förster, Disc. Faraday Soc., 1959, 27, 7.
[11]D. L. Dexter, J. Chem. Phys. 1953, 21, 836.
[12]M. A. O. Baldo, D. F. Brien, M. E. Thomspon, S. R. Forrest, Phys. Rev. B. 1999, 60, 20.
[13]Q. Peng, E. T. Kang, K. G. Neoh, D. Xiao, D. Zou, J. Mater. Chem.,2006, 16, 376
[14]D. Y. Kondakov, J. R. Sandifer, C. W. Tang, R. H. Young, J. Appl. Phys. 2003, 93, 1108
[15]S. W. Culligan, A. C. A. Chen, J. U. Wallace, K. P. Klubek, C. W. Tang, S. H. Chen, Adv. Funct. Mater. 2006, 16, 1481.
[1]Y. J. Tung, T. Nago, M. Hack, J. Brown, N. Koide, Y. Nagara, Y. Kato, H. Ito, SID 2004 Technical Digest 2004, 35, 48.
[2]Y. Kijima, N. Asai, S. I. Tamura, Jpn. J. Appl. Phys. 1999, 38, 5274.
[3]M. T. Lee, C. H. Liao, C. H. Tsai, C. H. Chen, Adv. Mater. 2005, 17, 2497.
[4]V. Sivasubramaniam, F. Brodkorb, S. Hanning, H. P. Loebl, V. van Elsbergen, H. Boerner, U. Scherf, M. Kreyenschmidt, J. Fluor. Chem. 2009, 130, 640.
[5]J. Shi, C. W. Tang, Appl. Phys. Lett., 2002, 80, 3201.
[6]H. Xin, F. Y. Li, M. Shi, Z. Q. Bian, C. H. Huang, J. Am. Chem. Soc. 2003, 125, 7166.
[7]Q. X. Tong, S. L. Lai, M. Y. Chan, Y. C. Zhou, H. L. Kwong, C. S. Lee, S. T. Lee, Chem. Phys. Lett. 2008, 455, 71.
[8]H. Tsuji, K. Sato, Y. Sato, E. Nakamura, Chem. Asian J. 2010, 5, 1294.
[9]B.W. D’Andrade, S.R. Forrest, A.B. Chwang, Appl. Phys. Lett. 2003, 83, 3858.
[10]M. Meng, W. Song, Y.-H. Kim, S.-Y. Lee, C.-G. Jhun, F. R. Zhu, D. H. Ryu, W.-Y. Kim, J. Nanosci. Nanotechnol. 2013, 13, 294.
[11]C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, Appl. Phys. Lett., 1995, 67, 3853.
[12]K. Suzuki, A. Seno, H. Tanabe, K. Ueno, Synth. Met., 2004, 143, 89.
[13]M. T. Lee, H. H. Chen, C. H. Liao, C. H. Tsai, C. H. Chen, Appl. Phys. Lett., 2004, 85, 3301.
[14]J. H. Lee, T. C. Lin, C. C. Liao, Proc. of SPIE, 2005, 5740, 138.
[15]Y. H. Ho, T. C. Lin, C. F. Wu, J. H. Lee, Proc. of SPIE, 2006, 6333, 633303.
[16]M. T. Lee, C. H. Liao, C. H. Tsai, C. H. Chen, Adv. Mater., 2005, 17, 2493.
[17]陳裕翰,國立清華大學博士論文,中華民國壹百年七月。
[18]古博仁,國立清華大學博士論文,中華民國九十四年十月。
[19]H. H. Chou, Y. H. Chen, H. P. Hsu, W. H. Chang, Y. H. Chen, C. H. Cheng, Adv. Mater.,2012, 24, 5867-5871.
[20]S.-O. Jeon, Y.-M. Jeon, J.-W. Kim, C.-W. Lee, M.-S. Gong, Synth. Met. 2007, 157, 558.
[21]P. W. Atkins, Molecular Quantum Mechanics, Oxford University Press, 1983.
[22]Z. H. Kafafi, Ed. Organic Electroluminescence, Tailor & Francis Group, LLC, 2005.
[23]D. Y. Kondakov, J. Appl. Phys. 2007, 102, 114504.
[24]C. A. Parker, C. G. Hatchard, Proc. Chem. Soc., 1962, 147.
[25]Y. Nichikawa, K. Hiroaki, Y. Onoue, K. Nishikawa, Y. Yoshitake, T. Shigematsu, Bunseki Kagaku, 1983, E115, 32
[26]B. Valeur, Molecular Fluorescence, Wiley-VCH, Weinheim 2002, 41.
[27]C. A. Parker, Proc. R. Soc. Lond. A, 1963, 276, 125.
[28]W. Zhao, F. N. Castellano, J. Phys. Chem. A, 2006, 110, 11440.
[29]電激發光暫態螢光光譜由國立清華大學材料系周子喻量測。
[30]Schmidt, Tobias D. and Setz, Daniel S. and Flämmich, Michael and Frischeisen, Jörg and Michaelis, Dirk and Krummacher, Benjamin C. and Danz, Norbert and Brütting, Wolfgang, Applied Physics Letters, 2011, 99, 163302
[31]S. Moller,S. R. Forrest, J. Appl. Phys. Lett., 2007, 90, 091102
[32]陳鑫金,OLED: 有機電激發光材料與元件,中華民國九十四年。
[33]H.-W. Lin, C.-L. Lin, H.-H. Chang, Y.-T. Lin, C.-C. Wu, Y.-M. Chen, R.-T. Chen, Y.-Y. Chien, and K.-T. Wong, J. Appl. Phys.,2004, 95, 88
[34]B. Kim,Y. Park,J. Lee, D. Yokoyama, J.-H. Lee, J. Kidob and J. Park, J. Mater. Chem. C, 2013, 1,432
[35]H. Kuma and C. Hosokawa, Sci. Technol. Adv. Mater., 2014, 15, 034201
[36]D. Yokoyama, Y. Park, B. Kim, S. Kim, Y.-J. Pu, J. Kido, and J. Park, Appl. Phys. Lett., 2011, 99, 123303
[37]K.H Kim, J.Y Baek, C.W. Cheon, C-K Moon, B. Sim, M.Y. Choi, J-J. Kim, Y-H. Kim, Chem. Comm., 2016, 10, 1039
[38]C.-K. Moon, K.-H. Kim, J. W. Lee, J.-J. Kim, Chem. Mater., 2015, 27, 2767
[39]水平極化光譜由國立清華大學材料系周子喻量測。
[1]R. Meerheim, B. Lüssem, K. Leo, Proc. IEEE, 2009, 97, 1606.
[2]P. Tyagi, R. Srivastava, A. Kumar, G. Chauhan, A. Kumar, S.S. Bawa, M.N. Kamalasanan, Synt. Met., 2010, 160, 1126.
[3]CH. Jonda, A. B. R. Mayer, U. Stolz, J. Mater. Sci., 2000, 35, 5645.
[4]L. S. Hung, C. W. Tang, Appl. Phys. Lett., 1999, 74, 3209.
[5]H. You, Y.Dai, Z. Zhang, D. Ma, J. Appl. Phys., 2007, 101, 026105.
[6]F. Wang, X. Qiao, T. Xiong, D. Ma, Org. Electron., 2008, 9, 985.
[7]Y.-K. Kim, J. W. Kim, and Y. Park, Appl. Phys. Lett., 2009, 94, 063305.
[8]T. Reichert, T. P. I. Saragi, J. Salbeck, RSC Adv., 2012, 2, 7388.
[9]P. Y. Chou, H. H. Chou, Y. H. Chen, T. H. Su, C. Y. Liao, H. W. Lin, W. C. Lin, H. Y. Yen, I. C. Chen, C. H. Cheng, Chem. Comm., 2014, 50, 6869-6871.
[10]Y. Lee, J. Kim, S. Kwon, C.-K. Min, Y. Yi, J.W. Kim, B. Koo, M.P. Hong, Org. Electron., 2008, 9, 407.
[11]Q. Wang, H. Aziz, Org. Electron., 2011, 12, 1571.
[12]周沛瑜,國立清華大學博士論文,中華民國壹百零三年二月。
[13]F. Wang, X. Qiao, T. Xiong, D. Ma, Org. Electron. 2008, 9, 985.
[14]X.-Y. Jiang, Z.-L. Zhang, J. Cao, W.-Q. Zhu, Solid-State Electron. 2008, 52, 952.
[15]S. Hamwi, J. Meyer, T. Winkler, T. Riedl, W. Kowalsky, Appl. Phys. Lett., 2009, 94, 253307.
[16]陳奕翔,國立清華大學博士論文,中華民國壹百零五年七月