研究生: |
涂家和 Tu, Chia-Ho |
---|---|
論文名稱: |
利用勞侖茲力驅動之主動式混合元件設計與分析 Design and analysis of a Lorentz-force-driven active micromixer |
指導教授: |
陳理定
Chen, Li-Ting 楊鏡堂 Yang, Jing-Tang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 主動式微混合器 、勞侖茲力 、生醫檢測 、磁流體 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的在於開發一款主動式微混合器。論文主旨在於利用電場使離子運動產生電流密度並和外部生成之垂直方向磁場作用產生勞侖茲力(Lorentz force)驅動流體,使流體界面產生拉伸和扭曲,加強混合的效果。首先利用數值模擬軟體CFD-ACE+模擬勞侖茲力對流體驅動混合之情形,且對直流及交流兩種不同訊號輸入所造成之流場形態進行討論及比較,接著依據歸納出合適之電極間距參數進行元件設計。而元件製造方面利用黃光微影製程製作電極,以及PDMS翻模製作腔體,接合後與外場供給裝置結合完成元件製作。
在實驗觀測上,由光學顯微鏡作染料實驗觀察混合效果,並與模擬結果進行比較與討論。而本文所提出之創新型蜿蜒電極設計,由於使用交流電,大大的減少電極氣泡產生及腐蝕,提升耐用性。且此種主動式混合器之優點為其製程及構造簡單,對流體有良好之操控性,以及不需要加入大電壓訊號減少對試劑之影響,將來也易整合於電路中作調控。而未來希望能藉由此設計概念應用於生醫檢測,增加檢測的速率及精確性。
The purpose of this thesis is to develop an active micromixer. The fluid is driven by Lorentz
force which is induced by the coupling between a magnetic field in vertical direction and a current
density due to ionic motions under an electric field. The deformation and distortion of the fluid
interface enhance mixing. In this article, we simulated the mixing process by CFD-ACE+ and
discussed different flow patterns under DC and AC driving signals, to help design the suitable
space between two electrodes for the micromixer. In device fabrication, the electrodes were
manufactured by MEMS techniques, and the chamber was made of PDMS by molding. Finally,
we combined them with field-generated instruments. In experiment observation, we performed
dye experiment and observed the mixing process by optical microscope. Results of the experiment
were compared and discussed with the previous simulations.
This research brings out a novel coiled pattern of electrode design. In addition, we utilized
AC signal to reduce bubbles formation and erosion of electrodes. Thus, the device has a better
performance. The advantages of this active micromixer are simplicity in its structure and
fabrication process, great manipulation of fluid, without high voltage signal that gains side effects of
specimens, and ability to integrate and control in electric circuits. Therefore, we hope the design
concept of the micromixer could apply to biomedical detection, raising its speed and accuracy in
the future.
Bakajin, O., Carlson, R., Chou, C. F., Chan, S. S., Gabel, C., Knight, J., Cox, T., and Austin, R. H., 1998, “Solid-state sensor and actuator workshop,” Hilton Head Island, SC, pp. 116-119.
Bau H., Zhong, J., and Yi, M., 2001,” A minute magnetohydrodynamic (MHD) mixer,” Sensors and Actuators B, Vol. 79, pp. 207-215.
Beebe, D. J., Adrian, R. J., Olsen, M. G., Stremler, M. A., Jo, B. H., and Aref, H., 2001, “Passive Mixing in Microchannels: Fabrication and Flow Experiments,” Journal of Mechanics and Industry, Vol. 2, pp. 343-348.
Cheng, D. K., 1996, Field and wave electromagnetic, second edition, Prentice Hall Inc., New York.
Chiem, N., and Harrison, D., 1997, “Microchip-based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline,” Analytical Chemistry, Vol. 69, pp. 373-378.
Davidson, P. A., 2001,” An introduction to magnetohydrodynamics,” Cambridge university press.
Deshmukh A. A., Liepmann, D., and Pisano A. P., 2000, “Continuous micromixer with pulsatile micropumps” Technical Digest of the IEEE Solid State Sensor and Actuator Workshop (Hilton Head Island, SC), pp. 73-6.
Deval, J., Tabeling, P., and Ho, C. M., 2002, “A dielectrophoretic chaotic mixer,” Proc. MEMS’02, 15th IEEE Int. Workshop Micro Electromechanical System (Las Vegas, Nevada), pp. 36-9.
Groisman, A., Enzelberger, M., and Quake, S. R., 2003, “Microfluidic memory and control devices,” Science, Vol. 300, pp. 955-958.
Koch, M., Chatelain, D., Evans, A. G. R., and Brunnshweiler, A., “Two Simple Micromixers Based on Silicon, 1998,” Journal of Micromechanics and Microengingeering, Vol. 8, pp. 123-126.
Koch, M., Schabmueller, C. G. J., Evans, A. G. R., and Brunnshweiler, A., 1999, “Micromachined Chemical Reaction System,” Sensor and Actuators B, Vol. 74, pp. 207-210.
Kopp, M. U., De Mello, A. J., and Manz, A., 1998, “Chemical Amplification: Continuous-Flow PCR on a Chip,” Science, Vol. 280, pp. 1046-1048.
Lemoff, A. V., Lee, A. P., 2000, “An AC magnetohydrodynamic micropump,” Sensor and Actuators B, Vol. 63, pp. 178-185.
Liu, R. H., Lenigk, R., Druyor-Sanchez, R. L., Yang, J., and Grodzinski, P., 2003, “Hybridization enhancement using cavitation microstreaming,” Analytical Chemistry, Vol. 75, pp. 1911-1917.
Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Aref, R. A. H., and Beebe, D. J., 2000,“Passive Mixing in a Three-Dimensional Serpentine Microchannel,” Journal of Microelectromechanical System, Vol. 9, No. 2.
Huang, X. C., Quesada, M. A., and Mathies, R. A., 1992, “DNA Sequencing Using Capillary Array Electrophoresis,” Analytical Chemistry, Vol. 64, pp. 2149-2154.
Nguyen, N. T., and Wu, Z., 2005, “Micromixers - a Review,” Journal of Micromechanics and Microengingeering, Vol. 15, pp. R1-R16.
Nguyan, N. T., 2007, Micromixers: fundamentals, design and fabrication, Willian Andrew Inc., New York.
Qian, S., and Bau, H. H., 2005,” Magneto-hydrodynamic stirrer for stationary and moving fluids,” Sensors and Actuators B, Vol. 106, pp. 859-870.
Santini, J. T., Cima, M. J., and Langer., R., 1999, “A Controlled-Release Microchip,” Nature, Vol. 397, pp. 335-338.
Sasaki, N., Kitamori, T., and Kim, H. B., 2006,“ AC electroosmotic micromixer for chemical processing in a microchannel,” Lab Chip, Vol. 6, pp. 550-554.
Schwesinger, N., Frank, T., and Wurmus, H., 1996, “A Modular Microfluid System with an Integrated Micromixer,” Journal of Micromechanics and Microengingeering, Vol. 6, pp. 99-102.
Stroock, A. D., Dertinger, S. K., Whitesides, and G. M., and Ajdari, A., 2002, “Patterning Flows Using Grooved Surfaces,” Analytical Chemistry, Vol. 74, No. 20, pp. 5306-5312.
Terry, S. C., Jerman, J. H., Verpoorte, E., and Angell, J. B., 1979, “A Gas Chromatographic Air Analyzer Fabricated on a Silicone Wafer,” IEEE Trans. Electron. Devices, Vol. ED-26, pp. 1880-1886.
West, J., Karamata, B., Lillis, B., Gleeson, J. P., Alderman, J., Collins, J. K., Lane, W., Mathewson, A., and Berney, H., 2002,” Application of magnetohydrodynamic actuation to continuous flow chemistry,” Lab Chip, Vol. 2, pp. 224-230.
方偉峰,2008,應用於DNA快速雜交檢測之微生化反應器之設計與開發,國立清華大學動力機械工程學系博士論文計劃書。
林洸銓,2004,主動式與被動式暢混合器之最適化設計,國立清華大學動力機械工程學系碩士論文。
童凱煬,2007,被動式微混合器之混合與流場分析,國立清華大學動力機械工程學系博士論