研究生: |
張孟承 Chang, Meng-Cheng |
---|---|
論文名稱: |
使用領航訊號之正交時頻空間調變系統的參數通道估測方法 Pilot-Aided Parametric Channel Estimation for Orthogonal Time Frequency Space Systems |
指導教授: |
王晉良
Wang, Chin-Liang |
口試委員: |
鐘嘉德
Chung, Char-Dir 謝欣霖 Shieh, Shin-Lin 黃昱智 Huang, Yu-Chih |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 46 |
中文關鍵詞: | 正交時頻空間調變 、通道估測 、延遲-都卜勒域通道 、領航訊號 |
外文關鍵詞: | Orthogonal Time Frequency Space modulation (OTFS), channel estimation, delay-Doppler domain channel, pilot |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,正交時頻空間 (orthogonal time frequency space; OTFS) 調變技術受到很大的關注,因為其在高移動場景下比正交分頻多工 (orthogonal frequency division multiplexing; OFDM) 技術具有顯著的效能優勢。在本論文中,我們針對OTFS系統提出一種使用領航訊號輔助之新的參數通道估測方法,包含使用理想波形和使用方波兩種情況;所提出之方法能夠提供良好的延遲、整數都卜勒頻移、分數都卜勒頻移及多路徑增益參數估測值,以有效重建延遲-都卜勒域 (delay-Doppler domain; DD domain) 通道矩陣,進而用於接收端的資料偵測。在本方法中,延遲乃透過一預設門檻值而估得,整數都卜勒頻移是經由尋找接收訊號的最大值而決定,分數都卜勒頻移是利用線性回歸技巧和最小平方法而求得,至於多路徑增益參數則是根據所估測出的延遲、整數都普勒頻移、分數都卜勒頻移以及OTFS的輸入輸出關係式而計算出。為了驗證所提出之參數通道估測方法的有效性,我們呈現廣泛的電腦模擬結果;與使用相同領航訊號進行直接通道估測之基於預設門檻值的現有方法相比,所提出之方法僅略微增加運算複雜度,但具有明顯較佳的正規化均方誤差和位元錯誤率效能。
Orthogonal time frequency space (OTFS) modulation has received great attention in recent years because it offers significant advantages over orthogonal frequency division multiplexing (OFDM) under high-mobility scenarios. In this thesis, we propose a new pilot-aided parametric channel estimation scheme for OTFS systems, including the case using ideal waveforms and the case using rectangular waveforms. The proposed scheme is able to provide good estimates of the delay, integer Doppler shift, fractional Doppler shift, and multipath-gain parameters for reconstructing an effective delay-Doppler domain channel matrix to be used for data detection at the receiver. The delay is estimated by using a preset threshold, the integer Doppler shift is determined through finding the maximum value of received symbols, the fractional Doppler shift is found based on the linear regression technique and the least-squares method, and the multipath-gain parameters are calculated according to the estimated delay, integer Doppler shift, and fractional Doppler shift as well as the OTFS input-output relationship. To verify the effectiveness of the proposed parametric channel estimation scheme for OTFS systems, extensive computer simulation results are presented. As compared with a related threshold-based scheme using the same pilot for direct channel estimation, the proposed one achieves much better performance, in terms of the normalized mean-squared error and the bit error rate, with only a slight increase in the computational complexity.
[1] R. Hadani et al., “Orthogonal time frequency space modulation,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), San Francisco, CA, USA, Mar. 2017, pp. 1–6.
[2] R. Hadani et al., “Orthogonal time frequency space modulation,” arXiv:1808.00519, Aug. 2018.
[3] M. Ramachandran, G. Surabhi, and A. Chockalingam, “OTFS: A new modulation scheme for high-mobility use cases,” J. Indian Inst. Sci., vol. 100, no. 2, pp. 315–336, Apr. 2020.
[4] P. Raviteja, K. T. Phan, Q. Jin, Y. Hong, and E. Viterbo, “Low-complexity iterative detection for orthogonal time frequency space modulation,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Barcelona, Spain, Apr. 2018, pp. 1–6.
[5] P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference cancellation and iterative detection for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501–6515, Oct. 2018.
[6] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 957–961, Jan. 2019.
[7] L. Li et al., “A simple two-stage equalizer with simplified orthogonal time frequency space modulation over rapidly time-varying channels,” arXiv:1709.02505, Sep. 2017.
[8] T. Zemen, M. Hofer, and D. Loeschenbrand, “Low-complexity equalization for orthogonal time and frequency signaling (OTFS),” arXiv:1710.09916, Oct. 2017.
[9] T. Zemen, M. Hofer, D. Loeschenbrand, and C. Pacher, “Iterative detection for orthogonal precoding in doubly selective channels,” in Proc. IEEE 29th Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), Bologna, Italy, Sep. 2018, pp. 1–7.
[10] S. Li, W. Yuan, Z. Wei and J. Yuan, “Cross domain iterative detection for orthogonal time frequency space modulation,” IEEE Tran. Wireless Commun., vol. 21, no. 4, pp. 2227–2242, Apr. 2022.
[11] T. Thaj and E. Viterbo, “Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 15606–15622, Dec. 2020.
[12] A. Naikoti and A. Chockalingam, “Low-complexity delay-Doppler symbol DNN for OTFS signal detection,” in Proc. IEEE 93rd Veh. Technol. Conf. (VTC-Spring), Helsinki, Finland, Apr. 2021, pp. 1–6.
[13] L. Xiang, Y. Liu, L. -L. Yang and L. Hanzo, “Gaussian approximate message passing detection of orthogonal time frequency space modulation,” IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 10999–11004, Oct. 2021.
[14] Y. K. Enku et al., “Two-dimensional convolutional neural network-based signal detection for OTFS systems,” IEEE Wireless Commun. Lett., vol. 10, no. 11, pp. 2514–2518, Aug. 2021.
[15] W. Yuan, Z. Wei, J. Yuan and D. W. K. Ng, “A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation,” IEEE Tran. Veh. Technol., vol. 69, no. 7, pp. 7976–7980, Jul. 2020.
[16] Z. Ding, R. Schober, P. Fan, and H. Vincent Poor, “OTFS-NOMA: An efficient approach for exploiting heterogenous user mobility profiles,” IEEE Trans. Commun., vol. 67, no. 11, pp. 7950–7965, Nov. 2019.
[17] K. Deka, A. Thomas, and S. Sharma, “OTFS-SCMA: A code-domain NOMA approach for orthogonal time frequency space modulation,” IEEE Trans. Commun., vol. 69, no. 8, pp. 5043–5058, Aug. 2021.
[18] Y. Ge, Q. Deng, P. C. Ching, and Z. Ding, “OTFS signaling for uplink NOMA of heterogeneous mobility users,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3147–3161, May 2021.
[19] K. R. Murali and A. Chockalingam, “On OTFS modulation for high Doppler fading channels,” in Proc. Inf. Theory Appl. Workshop (ITA), San Diego, CA, USA, Feb. 2018, pp. 1–10.
[20] A. Fish, S. Gurevich, R. Hadani, A. M. Sayeed, and O. Schwartz, “Delay-Doppler channel estimation in almost linear complexity,” IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7632–7644, Nov. 2013.
[21] R. Hadani and A. Monk, “OTFS: A new generation of modulation addressing the challenges of 5G,” arXiv:1802.02623, Feb. 2018.
[22] S. S. Rakib and R. Hadani, “Orthogonal time frequency space modulation system,” US Patent, US 9929783 B2, Mar. 2018.
[23] K. Ramachandran and A. Chockalingam, “MIMO-OTFS in high doppler fading channels: Signal detection and channel estimation,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, UAE, Dec. 2018, pp. 206–212.
[24] P. Raviteja, K. T. Phan, and Y. Hong, “Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4906–4917, May 2019.
[25] W. Yuan, S. Li, Z. Wei, J. Yuan, and D. W. K. Ng, “Data-aided channel estimation for OTFS systems with a superimposed pilot and data transmission scheme,” IEEE Commun. Lett., vol. 10, no. 9, pp. 1954–1958, Sept. 2021.
[26] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655–4666, Dec. 2007.
[27] O. K. Rasheed, G. D. Surabhi, and A. Chockalingam, “Sparse delay-Doppler channel estimation in rapidly time-varying channels for multiuser OTFS on the uplink,” in Proc. IEEE 91st Veh. Technol. Conf. (VTC-Spring), Antwerp, Belgium, May 2020, pp. 1–5.
[28] W. Shen, L. Dai, J. An, P. Fan, and R. W. Heath, “Channel estimation for orthogonal time frequency space (OTFS) massive MIMO,” IEEE Trans. Signal Process., vol. 67, no. 16, pp. 4204–4217, Aug. 2019.
[29] F. Liu, Z. Yuan, Q. Guo, Z. Wang, and P. Sun, “Message passing-based structured sparse signal recovery for estimation of OTFS channels with fractional Doppler shifts,” IEEE Tran. Wireless Commun., vol. 20, no. 12, pp. 7773–7785, Dec. 2021.
[30] D. N. C. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005.
[31] C. Zhang, W. Xing, J. H. Yuan, et al., “Performance of LDPC coded OTFS systems over high mobility channels,” ZTE Commun., vol. 19, no. 4, pp. 45–53, Dec. 2021. doi: 10.12142/ZTECOM.202104005.
[32] Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio Transmission and Reception, Version 8.6.0, document 3GPP TS 36.104, Jul. 2009.