研究生: |
張彤瑋 Chang, Tung-Wei |
---|---|
論文名稱: |
膠原蛋白模擬胜肽與其自組裝結構對酯類水解反應的催化效率探討 Study of Collagen-Mimetic Peptides and Their Supramolecular Structures on Catalyzing Ester Hydrolysis |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: |
朱立岡
Chu, Li-Kang 吳淑媬 Wu, Shu-Pao |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 膠原蛋白模擬胜肽 、人工水解酶 、自組裝結構 |
外文關鍵詞: | collagen-mimetic peptide, artifical hydrloase, self-assembly structure |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
天然水解酶具有高催化效率以及受質選擇性等優點,然而其易受環境影響因而解摺疊失去活性,由於天然水解酶主要由胺基酸所組成,因此近年來許多研究參考天然酵素活性中心胺基酸序列,並利用各式蛋白質結構作為骨架設計人工水解酶,然而此些人工水解酶催化能力仍不及天然酵素。由於膠原蛋白為人體中含量豐富的蛋白質,加上其特殊的三股螺旋結構,因此在本研究中,我們嘗試利用膠原蛋白模擬胜肽作為骨架,並加入天然酵素中常見的催化二聯體或三聯體,觀察此種胜肽作為人工水解酶的催化能力,我們使用CD光譜鑑定所設計的胜肽結構和熱穩定性,以及使用TEM觀察所形成的大型結構樣貌,最後利用UV-Vis光譜研究胜肽催化效率。在第一部分實驗中,我們嘗試置入不同的胺基酸組合,並改變所置入的胺基酸位置,結果發現經由置換的膠原蛋白模擬胜肽仍保有一定的穩定性,說明此胜肽結構適合作為人工解酶骨架,並且發現藉由三股螺旋結構能使催化二聯體更加靠近使催化效率提升;在第二部分實驗中,我們利用尾端Fmoc基團或是金屬離子使胜肽形成大型結構,並觀察胜肽所組成的大型結構其催化能力,結果發現由於Fmoc基團的存在能使置入胺基酸彼此靠近作用力提升因而增進催化能力,然而金屬離子的加入可能使其結構變得過於緊密因而遮蔽活性中心,使催化效率降低。我們利用膠原蛋白模擬胜肽做為骨架仿效天然水解酶,除了具有良好的穩定性,且對於較疏水的受質具有較好的催化能力,雖然整體催化效率仍不及天然水解酶,但整體胺基酸序列的設計能做為未來設計人工水解酶良好的參考。
Natural hydrolases have drawn much attention due to their high catalytic activity and chemical specificity. However, environmental change may make these enzymes unfold and lose their activities. Since the composition of natural hydrolases is amino acids, many studies have employed different types of peptide structures and used the amino acid sequences in the active sites of natural enzymes to construct artificial enzymes. Nevertheless, the catalytic efficiency of theses designed hydrolases cannot be as excellent as the natural enzymes. Collagen is the most abundant protein in human body and has a unique triple helica structure. In this study, we utilized collagen-mimetic peptides (CMPs) as our scaffolds to design artificial hydrolases. We used circular dichroism (CD), transmission electron microscopy (TEM), and UV-Vis spectroscopy to characterize the structure and measure the catalytic efficiency of a series of peptides with various arrangements of catalytic residues. We also studied the influence of the location of active site in CMPs on catalytic activity. In the first part, the designed CMPs could form stable triple helices, providing a stable skeleton for artificial hydrolases. Our results showed that the catalytic dyad in the triple helix could strongly interact with each other and exhibit a better catalytic efficiency. In the second part, we use Fmoc group and metal ions to promote the peptides to assembly into supramolecular structures. The results showed that the interaction within the catalytic dyad may be stronger with the assistant of Fmoc groups and improve the catalytic activity. However, the addition of metal ions may make structures become too compact to expose the active site, leading to the decrease of catalytic efficiency. Although the catalytic efficiency of our designed CMPs cannot be as good as that of natural enzymes, this study provides useful information for the development of artificial hydrolases in the future.
1.Shoulders, M. D.; Raines, R. T., Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-958.
2.Fallas, J. A.; O'Leary, L. E.; Hartgerink, J. D., Synthetic collagen mimics: self-assembly of homotrimers, heterotrimers and higher order structures. Chem. Soc. Rev. 2010, 39, 3510-3527.
3.Harrington, W. F.; Von Hippel, P. H., The structure of collagen and gelatin. Adv. Protein Chem. 1962, 1-138.
4.Okuyama, K.; Okuyama, K.; Arnott, S.; Takayanagi, M.; Kakudo, M., Crystal and molecular structure of a collagen-like polypeptide (Pro-Pro-Gly) 10. J. Mol. Biol. 1981, 152, 427-443.
5.Okuyama, K., Revisiting the molecular structure of collagen. Connect. Tissue Res. 2008, 49, 299-310.
6.Privalov, P., Stability of proteins: proteins which do not present a single cooperative system. Adv. Protein Chem. 1982, 1-104.
7.Brodsky, B.; Ramshaw, J. A., The collagen triple-helix structure. Matrix Biol. 1997, 15, 545-554.
8.Persikov, A. V.; Ramshaw, J. A.; Kirkpatrick, A.; Brodsky, B., Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-14967.
9.(a) Jencks, W. P.; Carriuolo, J., Imidazole catalysis. J. Biol. Chem. 1959, 243, 1272-1279; (b) Bruice, T. C.; Schmir, G. L., Imidazole catalysis. I. The catalysis of the hydrolysis of phenyl acetates by imidazole. J. Am. Chem. Soc. 1957, 79,1663-1667.
10.(a) Suh, J.; Oh, S., Remarkable proteolytic activity of imidazoles attached to cross-linked polystyrene. J. Org. Chem. 2000, 65, 7534-7540; (b) Kunitake, T.; Okahata, Y., Multifunctional hydrolytic catalysis: II. Hydrolysis of p-nitrophenyl acetate by a polymer catalyst which contains hydroxamate and imidazole functions. Bioorg. Chem. 1975, 4, 136-148; (c) Tonellato, U., Catalysis of ester hydrolysis by cationic micelles of surfactants containing the imidazole ring. J. Chem. Soc., Perkin Trans. 2 1976, 771-776.
11.Wieczorek, R.; Adamala, K.; Gasperi, T.; Polticelli, F.; Stano, P., Small and random peptides: an unexplored reservoir of potentially functional primitive organocatalysts. The case of seryl-histidine. Life 2017, 7, 19.
12.Bartlett, G. J.; Porter, C. T.; Borkakoti, N.; Thornton, J. M., Analysis of catalytic residues in enzyme active sites. J. Mol. Biol. 2002, 324, 105-121.
13.Khersonsky, O.; Tawfik, D. S., The histidine 115-histidine 134 dyad mediates the lactonase activity of mammalian serum paraoxonases. J. Biol. Chem. 2006, 281, 7649-7656.
14.Litzinger, S.; Fischer, S.; Polzer, P.; Diederichs, K.; Welte, W.; Mayer, C., Structural and kinetic analysis of Bacillus subtilis N-acetylglucosaminidase reveals a unique Asp-His dyad mechanism. J. Biol. Chem. 2010, 285, 35675-35684.
15.Dodson, G.; Wlodawer, A., Catalytic triads and their relatives. Trends Biochem. Sci. 1998, 23, 347-352.
16.Lerner, R. A.; Benkovic, S. J.; Schultz, P. G., At the crossroads of chemistry and immunology: catalytic antibodies. Science 1991, 252, 659-667.
17.Asboth, B.; Polgar, L., Transition-state stabilization at the oxyanion binding sites of serine and thiol proteinases: hydrolyses of thiono and oxygen esters. Biochemistry 1983, 22, 117-122.
18.Lehninger, A. L.; Nelson, D. L.; Cox, M. M.; Cox, M. M., Lehninger Principles of Biochemistry. Macmillan: 2005.
19.Palumbo, C., Organocatalysts for enantioselective synthesis of fine chemicals: definitions, trends and developments. Science Open Research 2014.
20.(a) Blow, D. M., Structure and mechanism of chymotrypsin. Acc. Chem. Res. 1976, 9, 145-152; (b) Perona, J. J.; Hedstrom, L.; Rutter, W. J.; Fletterick, R. J., Structural origins of substrate discrimination in trypsin and chymotrypsin. Biochemistry 1995, 34, 1489-1499; (c) Sawyer, L.; Shotton, D.; Campbell, J.; Wendell, P.; Muirhead, H.; Watson, H.; Diamond, R.; Ladner, R., The atomic
structure of crystalline porcine pancreatic elastase at 2.5 Å resolution: comparisons with the structure of α-chymotrypsin. J. Mol. Biol. 1978, 118, 137-208.
21.Kiefer, L. L.; Paterno, S. A.; Fierke, C. A., Hydrogen bond network in the metal binding site of carbonic anhydrase enhances zinc affinity and catalytic efficiency. J. Am. Chem. Soc. 1995, 117, 6831-6837.
22.Fierke, C. A.; Thompson, R. B., Fluorescence-based biosensing of zinc using carbonic anhydrase. In Zinc Biochemistry, Physiology, and Homeostasis, Springer: 2001; pp 19-36.
23.Cramer, F.; Kampe, W., Inclusion compounds. XVII. 1 catalysis of
decarboxylation by cyclodextrins. A model reaction for the mechanism of enzymes. J. Am. Chem. Soc. 1965, 87, 1115-1120.
24.Karlin, K. D.; Haka, M. S.; Cruse, R. W.; Gultneh, Y., Dioxygen-copper reactivity. Reversible oxygen and carbon monoxide binding by a new series of binuclear copper (I) complexes. J. Am. Chem. Soc. 1985, 107, 5828-5829.
25.Bezer, S.; Matsumoto, M.; Lodewyk, M. W.; Lee, S. J.; Tantillo, D. J.; Gagné, M. R.; Waters, M. L., Identification and optimization of short helical peptides with novel reactive functionality as catalysts for acyl transfer by reactive tagging. Org. Biomol. Chem. 2014, 12, 1488-1494.
26.Matsumoto, M.; Lee, S. J.; Waters, M. L.; Gagné, M. R., A catalyst selection protocol that identifies biomimetic motifs from β-hairpin libraries. J. Am. Chem. Soc. 2014, 136, 15817-15820.
27.Burton, A. J.; Thomson, A. R.; Dawson, W. M.; Brady, R. L.; Woolfson, D. N., Installing hydrolytic activity into a completely de novo protein framework. Nat. Chem. 2016, 8, 837.
28.(a) Baltzer, L.; Broo, K. S.; Nilsson, H.; Nilsson, J., Designed four-helix bundle catalysts—the engineering of reactive sites for hydrolysis and transesterification reactions of p-nitrophenyl esters. Bioorg. Med. Chem. 1999, 7, 83-91; (b) Bai, Y.;
Wang, C.; Liang, G.; Lai, W.; Xue, H.; Ling, Y.; Cheng, M.; Liu, K., Precisely designed isopeptide bridge‐crosslinking endows artificial hydrolases with high stability and catalytic activity under extreme denaturing conditions. Chem. Asian J. 2017, 12, 2539-2543.
29.Wang, P. S.; Nguyen, J. B.; Schepartz, A., Design and high-resolution structure of a β3-peptide bundle catalyst. J. Am. Chem. Soc. 2014, 136 , 6810-6813.
30.Gulseren, G.; Khalily, M. A.; Tekinay, A. B.; Guler, M. O., Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis. J. Mater. Chem. 2016, 4, 4605-4611.
31.(a) Rufo, C. M.; Moroz, Y. S.; Moroz, O. V.; Stöhr, J.; Smith, T. A.; Hu, X.; DeGrado, W. F.; Korendovych, I. V., Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 2014, 6, 303; (b) Al-Garawi, Z.; McIntosh, B.; Neill-Hall, D.; Hatimy, A.; Sweet, S.; Bagley, M.; Serpell, L., The amyloid architecture provides a scaffold for enzyme-like catalysts. Nanoscale 2017, 9,
10773-10783.
32.Zhang, Q.; He, X.; Han, A.; Tu, Q.; Fang, G.; Liu, J.; Wang, S.; Li, H., Artificial hydrolase based on carbon nanotubes conjugated with peptides. Nanoscale 2016, 8, 16851-16856.
33.Zaramella, D.; Scrimin, P.; Prins, L. J., Self-assembly of a catalytic multivalent peptide–nanoparticle complex. J. Am. Chem. Soc. 2012, 134, 8396-8399.
34.(a) Moroz, Y. S.; Dunston, T. T.; Makhlynets, O. V.; Moroz, O. V.; Wu, Y.; Yoon, J. H.; Olsen, A. B.; McLaughlin, J. M.; Mack, K. L.; Gosavi, P. M., New tricks for old proteins: single mutations in a nonenzymatic protein give rise to various enzymatic activities. J. Am. Chem. Soc. 2015, 137, 14905-14911; (b) Hiebler, K.; Lengyel, Z.; Castañeda, C. A.; Makhlynets, O. V., Functional tuning of the
catalytic residue pKa in a de novo designed esterase. Proteins 2017, 85, 1656-1665.
35.Mikolajczak, D. J.; Heier, J. L.; Schade, B.; Koksch, B., Catalytic activity of peptide–nanoparticle conjugates regulated by a conformational change. Biomacromolecules 2017, 18, 3557-3562.
36.Zhang, C.; Shafi, R.; Lampel, A.; MacPherson, D.; Pappas, C. G.; Narang, V.; Wang, T.; Maldarelli, C.; Ulijn, R. V., Switchable hydrolase based on reversible formation of supramolecular catalytic site using a self assembling peptide.
Angew. Chem., Int. Ed. 2017, 56, 14511-14515.
37.Zhao, Y.; Lei, B.; Wang, M.; Wu, S.; Qi, W.; Su, R.; He, Z., A supramolecular approach to construct a hydrolase mimic with photo-switchable catalytic activity. J. Mater. Chem. 2018, 6, 2444-2449.
38.Hung, P.-Y.; Chen, Y.-H.; Huang, K.-Y.; Yu, C.-C.; Horng, J.-C., Design of polyproline-based catalysts for ester hydrolysis. ACS Omega 2017, 2, 5574-5581.
39.Wang, M.; Lv, Y.; Liu, X.; Qi, W.; Su, R.; He, Z., Enhancing the activity of peptide-based artificial hydrolase with catalytic Ser/His/Asp triad and molecular imprinting. ACS Appl. Mater. Interfaces 2016, 8, 14133-14141.
40.Ting, Y.-H.; Chen, H.-J.; Cheng, W.-J.; Horng, J.-C., Zinc (II)–histidine induced collagen peptide assemblies: morphology modulation and hydrolytic catalysis evaluation. Biomacromolecules 2018, 19, 2629-2637.
41.Fasman, G. D., Circular dichroism and the conformational analysis of biomolecules. Springer Science & Business Media: 2013.
42.Greenfield, N. J., Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc. 2006, 1, 2527-2535.
43.Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-2154.
44. Johnson, K. A.; Goody, R. S., The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 2011, 50, 8264-8269.
45.Ackerman, M. S.; Bhate, M.; Shenoy, N.; Beck, K.; Ramshaw, J. A.; Brodsky, B., Sequence dependence of the folding of collagen-like peptides single amino acids affect the rate of triple-helix nucleation. J. Biol. Chem. 1999, 274, 7668-7673.
46.Chen, C.-C.; Hsu, W.; Kao, T.-C.; Horng, J.-C., Self-assembly of short collagen-related peptides into fibrils via cation− π interactions. Biochemistry 2011, 50 , 2381-2383.
47.Berisio, R.; Granata, V.; Vitagliano, L.; Zagari, A., Imino acids and collagen triple helix stability: characterization of collagen-like polypeptides containing Hyp-Hyp-Gly sequence repeats. J. Am. Chem. Soc. 2004, 126, 11402-11403.
48.Matsumoto, M.; Lee, S.; Gagné, M.; Waters, M., Cross-strand histidine–aromatic interactions enhance acyl-transfer rates in beta-hairpin peptide catalysts. Org. Biomol. Chem. 2014, 12, 8711-8718.
49.Lorand, L.; Brannen Jr, W.; Rule, N., Thrombin-catalyzed hydrolysis of p-nitrophenyl esters. Arch. Biochem. Biophys. 1962, 96, 147-151.
50.Maret, W., New perspectives of zinc coordination environments in proteins. J. Inorg. Biochem. 2012, 111, 110-116.
51.Zastrow, M. L.; Pecoraro, V. L., Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes. J. Am. Chem. Soc. 2013, 135, 5895-5903.