簡易檢索 / 詳目顯示

研究生: 許弘竣
Hsu, Hung-Chun
論文名稱: 2.45 GHz微波加速生質柴油之酯化反應研究
Study of Accelerating Esterification Reaction of Biodiesel with 2.45 GHz Microwave Cavity
指導教授: 張存續
Chang, Tsun-Hsu
口試委員: 李義發
Li, Yi-Fa
王明瑞
Wang, Ming-Rui
趙賢文
Chao, Hsein-Wen
姚欣佑
Yao, Hsin-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 42
中文關鍵詞: 微波游離指肪酸生質柴油酯化反應參數映射圖
外文關鍵詞: Microwave, FreeFattyAcid, Biodiesel, EsterificationReaction, ContouMap
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以改良生質柴油的微波設備以及比較傳統加熱與微波製程對於生質柴油之酯化反應的加速效率為目標。
    目前市面上的微波儀器僅供少量反應物實驗使用,或者是需要使用大功率波源才能加熱較多的反應物,為此本研究延續了實驗室學長們的設計,使用第二代的微波腔體,僅需一個2.45GHz的波源,且目前的輸出功率只需要到1kW,實現降低廢熱、能源的高效轉換,延續了阻抗匹配的良好彈性讓實驗操作能夠穩定,並增加了反應容量。
    本研究分別在傳統加熱製程以及微波腔體製程下進行了不同反應溫度的酯化反應實驗,皆沒有添加催化劑,並且從數據上已明顯看出微波製程相較傳統製程已有差異,且反應溫度越高,微波製程的加速就越明顯,就攝氏200度反應來說,同樣從酸價(Acid Value) 20dB降到8.5dB,傳統加熱需要6小時而微波僅需4小時,考慮到隨著到達反應終點,反應速率下降,耗時會上升許多,可以斷定降到AV 5dB之時,微波的反應時間是可以少於傳統製程的一半。
    本研究除了量測AV變化之外,另外藉由氣相色譜法以及場強化共振腔微擾法分別測量了實驗樣品的各成分含量以及該介電系數,期許可以發現兩者間關聯的蛛絲馬跡。
    本研究後續改良出了第三、第四代的微波腔體,將原先的攪拌式更改成噴霧式,將反應物霧化並把反應腔長拉長,增加微波作用的面積及時間,並將波導管改成一對二的雙出口波導管,降低位於波導管出口之鐵氟龍塊材上的能量密度,以免碳化燒毀,但四代腔體尚有升溫問題,仍無法滿足實驗需求,期許未來能夠將四代腔體完善並投入實驗以更進一步提升酯化反應的速率。


    This work aims to improve the microwave cavity to accelerate the rate of esterification reaction for biodiesel compared by conventional heating process.
    The microwave instruments on the market currently are only used for the experiments with a small amount of reactants. For this reason, this research follows the design of the laboratory seniors, using 2nd microwave cavity, which is driven by a 2.45 GHz source and the output is less than 1kW, realizing the efficient conversion of energy and lowering waste heat, and the good flexibility of impedance matching, makes the experiment operation stable.
    In this work, with no catalyst added, esterification experiments were carried out under the conventional heating process and the microwave cavity process with different reaction temperatures. Obviously, the data shows that the reaction rate of microwave process is faster than conventional one, and the higher reaction temperature, the more difference between microwave and conventional one. Taking 200°C experiment into account, it requires 6 hours for acid value reduced from 20dB to 8.5dB under conventional process, while it only requires 4 hours for that under microwave one. As the esterification reaching the reaction end, when the reaction rate approaching 0, the time-consuming of reaction will increase a lot, and the subsequent time for microwave process to reach the reaction goal, AV dropping to 5dB, can be less than half of the traditional process.
    In addition to measuring AV, this study also measured the content of each component of the experimental sample and measured the dielectric coefficient by gas chromatography and field-enhanced resonant cavity perturbation respectively.
    We propose the 3rd and 4th generation microwave cavities subsequently. Changing the original stirring type to a spray type, the reactants are atomized and the length of the cavity is extended to increase the interacting area and time with microwave, and the wave guide is reshaped into a one-to-two wave guide to reduce the energy density on the teflon window, avoiding carbonization and burnt.

    目錄 摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 vii 一、緒論 1 1.1 前言 1 1.2 生質柴油及製程介紹 2 1.3 微波簡介 3 1.3.1 微波 3 1.3.2 微波加熱優勢 4 1.3.3微波加熱機制 5 1.4介電系數 6 1.5共振腔體 8 1.5.2品質因子 (Q Factor) 8 1.5.3共振腔裡的介電係數影響 9 二、腔體與周邊設計 10 2.1 腔體模擬 10 2.2第一代腔體 10 2.2.1腔體設計 10 2.2.2腔體討論 13 2.3第二代腔體 14 2.3.1腔體設計 14 2.3.2腔體討論 18 2.4第三代腔體 19 2.4.1腔體設計 19 2.4.2腔體討論 20 2.5第四代腔體 21 2.5.1腔體設計 21 2.5.2腔體討論 22 三、實驗方法 23 3.1實驗原理 23 3.2酯化反應(Esterification) 23 3.3分析方法 23 3.3.1酸價(Acid Value) 23 3.3.2場強化共振腔微擾法與參數映射圖 24 3.3.3氣相色譜法 25 四、實驗設置 28 4.1 傳統加熱實驗設置 28 4.2微波加熱實驗設置 29 五、實驗結果與分析 33 5.1 實驗結果 33 5.2酸價 34 5.3氣相色譜法 36 5.4介電係數量測 38 六、結論 40 七、參考資料 41

    [1] Gole, Vitthal L., and Parag R. Gogate. "Intensification of synthesis of biodiesel from non-edible oil using sequential combination of microwave and ultrasound." Fuel Processing Technology 106 (2013): 62-69.
    [2] Kim, Daeho, et al. "Accelerated esterification of free fatty acid using pulsed microwaves." Bioresource technology 102.14 (2011): 7229-7231.
    [3] Kim, Daeho, et al. "Microwave-accelerated energy-efficient esterification of free fatty acid with a heterogeneous catalyst." Bioresource technology 102.3 (2011): 3639-3641.
    [4] El Sherbiny, Shakinaz A., Ahmed A. Refaat, and Shakinaz T. El Sheltawy. "Production of biodiesel using the microwave technique." Journal of Advanced Research 1.4 (2010): 309-314.
    [5] Chen, Kang-Shin, et al. "Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system." Energy 38.1 (2012): 151-156.
    [6] Barnard, T. Michael, et al. "Continuous-flow preparation of biodiesel using microwave heating." Energy & Fuels 21.3 (2007): 1777-1781.
    [7] Patil, Prafulla D., et al. "Microwave-assisted catalytic transesterification of camelina sativa oil." Energy & Fuels 24.2 (2009): 1298-1304.
    [8] Suppalakpanya, K., S. B. Ratanawilai, and C. Tongurai. "Production of ethyl ester from crude palm oil by two-step reaction with a microwave system." Fuel 89.8 (2010): 2140-2144.
    [9] Azcan, Nezihe, and Aysegul Danisman. "Microwave assisted transesterification of rapeseed oil." Fuel 87.10-11 (2008): 1781-1788.
    [10] Lertsathapornsuk, V., et al. "Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator." Fuel Processing Technology 89.12 (2008): 1330-1336.
    [11] Zhang, Su, et al. "Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst." Bioresource technology 101.3 (2010): 931-936.
    [12] Yuan, H., B. L. Yang, and G. L. Zhu. "Synthesis of biodiesel using microwave absorption catalysts." Energy & Fuels 23.1 (2008): 548-552.
    [13] Azcan, Nezihe, and Elif Demirel. "Obtaining 2-octanol, 2-octanone, and sebacic acid from castor oil by microwave-induced alkali fusion." Industrial & Engineering Chemistry Research 47.6 (2008): 1774-1778.
    [14] Hernando, J., et al. "Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes." Fuel 86.10-11 (2007): 1641-1644.
    [15] Azcan, Nezihe, and Aysegul Danisman. "Alkali catalyzed transesterification of cottonseed oil by microwave irradiation." Fuel 86.17-18 (2007): 2639-2644.
    [16] Leadbeater, Nicholas E., and Lauren M. Stencel. "Fast, easy preparation of biodiesel using microwave heating." Energy & Fuels 20.5 (2006): 2281-2283.
    [17] Patil, Prafulla, et al. "Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions." Chemical Engineering Journal 168.3 (2011): 1296-1300.
    [18] Nagahata, Ritsuko, et al. "Microwave-Assisted Facile and Rapid Esterification of Amino Acids I: Esterification of L-Leucine from Batch to Flow Processes and Scale-Up." Natural Science 9.4 (2017): 110-122.

    QR CODE