簡易檢索 / 詳目顯示

研究生: 彭光右
Kuan-You Peng
論文名稱: 旋量玻色-愛因斯坦凝聚於約費-朴立卻德磁場下之 基態與激發態解
The Ground and Excited States of Spinor Bose-Einstein Condensates with Ioffe--Pritchard Magnetic Field
指導教授: 陳人豪
Jen-Hao Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2014
畢業學年度: 102
語文別: 中文
中文關鍵詞: 玻色-愛因斯坦凝聚約費-朴立卻德磁場基態與激發態解
外文關鍵詞: Bose-Einstein Condensates, Ioffe--Pritchard Magnetic Field, Ground and Excited States
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們採用延續法(PACM)來計算自旋為1 的
    玻色-愛因斯坦凝聚(BEC)的約費-朴立卻德磁場下的基態
    和激發態解。把自旋無關的作用力、自旋交換的作用力與約
    費-朴立卻德強度磁場為延續法的參數。特別是線性薛丁格
    方程(LSE)為延續法的起始點。最後比較相對應的能量,
    我們可以在約費-朴立卻德磁場影響下自旋為1 下的基態。


    In this thesis, we employ the parameter switching continuation
    methods (PACM) to compute the ground and excited state solutions of
    the spin-1 Bose Einstein condensates (BEC) with the Ioffe-Pritchard
    magnetic field.
    The spin-independent and spin-exchange coupling constants and the
    strength of Ioffe-Pritchard magnetic field are treated as the continuation
    parameters. Particularly, the ground and excited state solutions of the
    linear Schrödinger equation (LSE) which describes the BEC system
    without any interaction are used as the starting points in the
    continuation process. Finally, by comparing the corresponding energies,
    we can obtain the ground state of the spin-1 BEC under the effect of the
    Ioffe-Pritchard magnetic field.

    1. Introduction 1 2. Model Description 3 3. Numerical Schemes 8 3.1. Pseudo-Arclength Continuation Method 8 3.2. Starting Points in Continuation Process 10 4. Numerical Results 13 4.1. The case of B(x) = cos(x) + isin(x), gn = 400, and gs = 250 13 4.2. The case of B(x) = cos(x) + isin(x), gn = 400; and gs = -250 15 4.3. The case of B(x) = cos(x) + icos(x), gn = 400, and gs = 250 18 4.4. The case of B(x) = cos(x) + icos(x), gn = 400, and gs = -250 20 4.5. Effect of gs 23 5. Conclusion 26

    References
    [1] M. H. Anderson, J. R. Ensher, M. R. Mathews, C. E. Wieman, and E.
    A., Observation of Bose-Einstein condensation in a dilute atomic vapor,
    Science 269 (1995) 198-201.
    [2] E. Allgower and K. Georg, Numerical Continuation Methods: An Intro-
    duction, Springer-Verlag, New York, 1990.
    [3] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence
    of Bose-Einstein condensation in an atomic gas with attractive interac-
    tions, Phys. Rev. Lett. 75 (1995) 1687-1690.
    [4] S.-L. Chang, C.-S. Chien, Adaptive continuation algorithms for comput-
    ing energy levels of rotating Bose-Einstein condensates, Comput. Phys.
    Comm. 177 (2007) 707-719.
    [5] P. K÷osiewicz, J. Broeckhove, W. Vanroose, Using pseudo-arclength con-
    tinuation to trace the resonances of the Schrödinger equation, Comput.
    Phys. Comm. 180 (2009) 545-548.
    [6] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J.
    Miesner, J. Stenger and W. Ketterle, Optical con…nement of a Bose-
    Einstein condensate, Phys. Rev. Lett. 80 (1998) 2027-2030.
    [7] M. Moreno-Cardoner, J. Mur-Petit, M. Guilleumas, A. Polls, A. San-
    pera, and M. Lewenstein, Predicting spinor condensate dynamics from
    simple principles, Phys. Rev. Lett. 99 (2007) 020404-020407.
    27
    [8] T.-L. Ho, Spinor Bose condensates in optical traps, Phys. Rev. Lett. 81
    (1998) 742-745.
    [9] Tomoya Isoshima, Kazushige Machida, and Tetsuo Ohmi, Spin-domain
    formation in spinor Bose-Einstein condensation, Phys. Rev. A 60 (1999)
    4857-4863.
    [10] W. Bao and H. Wang, A mass and magnetization conservative and en-
    ergydiminishing numerical method for computing ground state of spin-1
    Bose-Einstein condensates, SIAM J. Numer. Anal. 45 (2007) 2177-2200.
    [11] M.-S. Chang, Q. Qin, W. Zhang, Y. Li and Michael S. Chapman, Coher-
    ent spinor dynamics in a spin-1 Bose condensate, Nature Phys. 1 (2005)
    111-116.
    [12] J. Mur-Petit, M. Guilleumas, A. Polls, A. Sanpera, and M. Lewenstein,
    Dynamics of F = 1 87Rb condensates at …nite temperatures, Phys. Rev.
    A 73 (2006) 013629-013634.
    [13] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen, and
    B. J. Verhaar, Interisotope determination of ultracold Rubidium interac-
    tions from three high-precision experiments, Phys. Rev. Lett. 88 (2002)
    093201-093204.
    [14] M. Takahashi, V. Pietilä, M. Möttönen, T. Mizushima, and K. Machida,
    Vortex-splitting and phase-separating instabilities of coreless vortices in
    28
    F = 1 spinor Bose-Einstein condensates, Phys. Rev. A 73 (2009) 023618-
    023631.
    [15] Y.-C. Kuo , W.-W. Lin , S.-F. Shieh, and W. Wang, A minimal en-
    ergy tracking continuation method for coupled nonlinear Schrödinger
    equations, J. Comput. Phys. 228 (2009) 7941-7956.
    [16] Y.-C. Kuo , W.-W. Lin , S.-F. Shieh, and W. Wang, A hyperplane-
    constrained continuation method for near singularity in coupled non-
    linear Schrödinger equations, Applied Numerical Mathematics (2010),
    doi:10.1016/j.apnum.2009.11.007.
    [17] Matuszewski, M. and Alexander, T. J. and Kivshar, Y. S., Excited spin
    states and phase separation in spinor Bose-Einstein condensates, Phys.
    Rev. A, 80 (2009) 023602-023610.
    [18] S.-M. Chang, Y.-C. Kuo, W.-W. Lin, S.-F. Shieh, A continuation
    BSOR-Lanczos-Galerkin method for positive bound states of a multi-
    component Bose-Einstein condensate, J. Comput. Phys. 210 (2005) 439-
    458.
    [19] Jen-Hao Chen, I-Liang Chern, Weichung Wang, Exploring Ground
    States and Excited States of Spin-1 Bose-Einstein Condensates by Con-
    tinuation Methods, J. Comput. Phys. 230 (2011) 2222–2236.
    [20] Weizhu Bao and Fong Yin Lim, Computing Ground States of Spin-1
    29
    Bose–Einstein Condensates by the Normalized Gradient Flow, SIAM J.
    Sci. Comput., 30 (2008) 1925–1948.
    [21] Pei-Gen Yan, Shen-Tong Ji, Xue-Shen Liu, Symmetry breaking and tun-
    neling dynamics of F = 1 spinor Bose–Einstein condensates in a triple-
    well potential, Physics Letters A, 77 (2013) 878–884.
    [22] A. Benseny, S. Fernández-Vidal, J. Bagudà, R. Corbalán, A. Picón,
    L. Roso, G Birkl and J. Mompart, Atomtronics with holes: Coherent
    transport of an empty site in a triple-well potential, Phys. Rev. A 82
    (2010) 013604-013611.
    [23] U.Ernst, A.Marte, F.Schreck, J.Schuster, G.Rempe, Bose-Einstein con-
    densation in a pure Io¤e-Pritchard …eld con…guration, Europhys. Lett.
    41 (1998) 1-6.
    [24] T Isoshima, M Nakahara, T Ohmi, K Machida, Creation of a persistent
    current and vortex in a Bose-Einstein condensate of alkali-metal atoms,
    Physical review letters, 61 (2000), 063610.
    [25] A. E. Leanhardt, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ket-
    terle, Coreless Vortex Formation in a Spinor Bose-Einstein Condensate,
    Physical review letters. 90 (2003), 140403.1-140403.4.
    [26] Weizhu Bao, I-Liang Chen, Yanzhi Zhang, E¢ cient numerical methods
    for computing ground states of spin-1 Bose–Einstein condensates based
    on their characterizations, J. Comput. Phys. 253 (2013) 189-208.
    30
    [27] EN Bulgakov, AF Sadreev, Vortex phase diagram of F= 1 spinor Bose-
    Einstein condensates, Physical review letters, 90 (2003) 200401.
    [28] Z. F. Xu, P. Zhang, C. Raman, L. You, Continuous vortex pumping
    into a spinor condensate with magnetic …elds, Physical review letters,
    78 (2008) 043606.1-043606.8.
    31

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE